
Gurthang - A Fuzzing Framework for Concurrent Network Servers

Connor W. Shugg

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science & Applications

Godmar Back, Chair

Matthew Hicks

Haining Wang

May 5th, 2022

Blacksburg, Virginia

Keywords: Fuzzing, Systems, Networking, Security, Testing

Copyright 2022, Connor W. Shugg

Gurthang - A Fuzzing Framework for Concurrent Network Servers

Connor W. Shugg

(ABSTRACT)

The emergence of Internet-connected technologies has given the world a vast number of

services easily reachable from our computers and mobile devices. Web servers are one of the

dominant types of computer programs that provide these services to the world by serving files

and computations to connected users. Because of their accessibility and importance, web

servers must be robust to avoid exploitation by hackers and other malicious users. Fuzzing

is a software testing technique that seeks to discover bugs in computer programs in an

automated fashion. However, most state-of-the-art fuzzing tools (fuzzers) are incapable of

fuzzing web servers effectively, due to their reliance on network connections to receive input

and other unique constraints they follow. Past research exists to remedy this situation, and

while they have had success, certain drawbacks are introduced in the process.

To address this, we created Gurthang, a fuzzing framework that gives state-of-the-art fuzzers

the ability to fuzz web servers easily, without having to modify source code, the web server’s

threading model, or fundamentally change the way a server behaves. We introduce novelty

by providing the ability to establish and send data across multiple concurrent connections

to the target web server in a single execution of a fuzzing campaign, thus opening the door

to the discovery of concurrency-related bugs. We accomplish this through a novel file format

and two shared libraries that harness existing state-of-the-art fuzzers.

We evaluated Gurthang by performing a research study at Virginia Tech that yielded 48

discovered bugs among 55 web servers written by students. Participants utilized Gurthang

to integrate fuzzing into their software development process and discover bugs. In addition,

we evaluated Gurthang against Apache and Nginx, two real-world web servers. We did not

discover any bugs on Apache or Nginx, but Gurthang successfully enabled us to fuzz them

without needing to modify their source code. Our evaluations show Gurthang is capable of

performing fuzz-testing on web servers and discovering real bugs.

Gurthang - A Fuzzing Framework for Concurrent Network Servers

Connor W. Shugg

(GENERAL AUDIENCE ABSTRACT)

The Internet is widely apparent in our everyday lives. Since its creation, a wide variety

of technologies and critical infrastructures have become accessible via the Internet. While

this accessibility is a great boon for many, it does not come without risk. Web servers are

one of the dominant types of computer programs that make the Internet what it is today;

they are responsible for transmitting web pages and other files to connected users, as well

as performing important computations per the user’s request. Like any computer program,

web servers contain bugs that may lead to vulnerabilities if exploited by a malicious user (a

hacker). Considering they are open to all via the Internet, it is critical to catch and fix as

many bugs as possible during a web server’s development. Certain tools, called fuzzers, have

been created to test computer programs in an automated fashion to discover bugs (called

fuzzing, or fuzz-testing), although many of these fuzzers lack the ability to effectively test

web servers due to the specific constraints a web server must follow. Previous research exists

to fix this problem, but certain drawbacks are introduced in the process.

To address this, we developed Gurthang, a fuzzing framework that gives state-of-the-art

fuzzers the ability to test a variety web servers, while also fixing some of these drawbacks

and introducing a novel technique to test the concurrency aspects of a web server. We

evaluated Gurthang against several web servers through a research study at Virginia Tech

in which participating students performed fuzz-testing on web servers they implemented for

their coursework. We discovered 48 bugs across 55 web servers through this study. We also

evaluated Gurthang against Apache and Nginx (two web servers frequently used in the real

world) and showed Gurthang is capable of fuzzing them without the need to modify their

source code.

Dedication

I am blessed with lots of wonderful friends and family to which I dedicate this thesis. I’m

especially grateful for my two loving parents, Chris and Beth Shugg, who have been my

biggest supporters and the best parents I could possibly ask for. To my brother Ben and

sister Katie, I am incredibly grateful for their never-ending support and love. To my friends

I have made throughout my college studies, I thank for their support and for the memories

I’ll cherish forever. To the Marching Virginians and everyone in it (with a heavy emphasis

on my friends in the trumpet section), I thank for an unforgettable and life-changing five

years. Lastly, to the late J.R.R. Tolkien, I thank for creating a world to which I often find

myself escaping, and for inspiring the name of this thesis.

vi

Acknowledgments

I would like to thank my advisor, Dr. Back, for helping me to perform this research and

complete my degree. His guidance has been a huge help over the past few years, both while

completing my degree and working with him as a teaching assistant for CS 3214. I have

taken many valuable lessons from our collaboration and am very grateful for the time he has

devoted to my work.

I would also like to thank the rest of my committee, Dr. Hicks and Dr. Wang, for agreeing

to provide feedback and insight on my research. I am especially grateful to Dr. Hicks for

hosting a Systems Security Seminar on Fuzzing during my final semester.

I also must acknowledge the many students I was fortunate enough to work with during my

time as a teaching assistant. I thank them for challenging me to be a good mentor and a

reliable peer. I am also very grateful to those who participated in my research study to make

this thesis possible.

Finally, I would like to thank Professor William McQuain for introducing me to computer

systems and inspiring me to go into this field.

vii

Contents

List of Figures xii

1 Introduction 1

1.1 Challenges of Fuzzing Network Applications 2

1.2 Proposed Solution . 5

1.3 Contributions Made . 8

1.4 Thesis Roadmap . 9

2 Background 10

2.1 Fuzzing . 10

2.1.1 The Origins of Fuzzing . 10

2.1.2 Types of Fuzzers . 11

2.1.3 Basic Blocks . 13

2.1.4 LLVM . 14

2.1.5 AFL and AFL++ . 14

2.1.6 Memory-Related Vulnerabilities . 16

2.2 Networking Fundamentals . 17

2.2.1 TCP - Transmission Control Protocol 17

viii

2.2.2 HTTP - Hypertext Transfer Protocol 19

2.2.3 Web Server Concurrency Design . 26

2.3 Operating Systems Fundamentals . 27

2.3.1 Linux Standard File Streams . 27

2.3.2 Linux Networking Sockets . 28

2.3.3 Linux Shared Libraries & LD_PRELOAD Interposition 30

2.3.4 Linux Process Signals . 32

3 Design and Implementation 34

3.1 Design Overview . 35

3.1.1 Bridging the Input Gap . 37

3.1.2 The Comux File Format . 37

3.1.3 The Comux Mutator . 38

3.2 The Comux File Format . 39

3.2.1 File Layout . 39

3.2.2 The Comux Toolkit . 42

3.3 The Gurthang LD_PRELOAD Library . 42

3.3.1 Internal Threading . 44

3.3.2 Connection Table . 45

3.4 The Gurthang AFL++ Custom Mutator . 46

ix

3.4.1 Comux Inspection . 46

3.4.2 Comux Mutation Strategies . 47

3.4.3 Test Case Trimming . 52

3.5 Design Limitations . 53

4 Evaluation 55

4.1 Evaluation Goals . 55

4.2 Research Study . 55

4.2.1 HTTP Server Project . 56

4.2.2 Study Protocol . 57

4.2.3 Study Participation . 60

4.2.4 Unit Testing Prior to Participation 61

4.2.5 Assessment of Gurthang’s Use By Participants 67

4.2.6 Examples of Bugs Discovered by Gurthang 71

4.2.7 Participant Bug Fixes over Multiple Fuzzing Campaigns 81

4.3 Survey Results . 87

4.4 Fuzzing Real-World Web Servers . 90

4.4.1 Fuzzing Apache . 91

4.4.2 Fuzzing Nginx . 94

4.5 Evaluation Results . 96

x

4.6 Evaluation Limitations . 99

5 Related Work 101

5.1 Related Work in Fuzzing . 101

5.2 Network Application Fuzzers . 104

6 Future Work 107

6.1 Increased Performance . 107

6.2 Protocol Awareness . 108

6.3 True Parallel Communication . 108

6.4 Further Testing of Real-World Web Servers 109

7 Conclusions 110

Bibliography 112

xi

List of Figures

1.1 Challenge 1 - Input Management. 3

1.2 Challenge 2 - Fuzzing Across Multiple Connections of Varying Order. 4

1.3 Challenge 3 - Fuzzing Message Boundaries. 5

1.4 A high-level view of Gurthang’s architecture. 7

2.1 Depiction of a standard fuzzing loop. 11

2.2 An HTTP request message depicting a GET request for /index.html. 19

2.3 An HTTP request message depicting a simple authentication request. 20

2.4 An HTTP response message depicting a possible response for a GET request

for /index.html . 22

2.5 An HTTP response message depicting a possible response for a failed login

attempt. 22

2.6 An HTTP request message depicting a simple authentication request. 25

2.7 An HTTP response message depicting the server’s response to a successful

login attempt. 25

2.8 An HTTP request message depicting the client choosing to use a previously-

received cookie in order to gain access to a private file. 26

3.1 Gurthang’s logo, created by Connor Shugg. 34

xii

3.2 A diagram depicting Gurthang’s architecture. 36

3.3 The Comux file architecture. 40

3.4 One example of a possible scheduling of four chunks in a single comux file. . 41

3.5 A depiction of the internal workings of the Gurthang LD_PRELOAD library. . . 43

3.6 An example comux file with two connections and three chunks. 49

3.7 The same example comux file as shown in Figure 3.6, with a new scheduling

value for chunk C-0. 50

4.1 The introduction screen displayed by the Python script to the participants. . 58

4.2 An example of a crash report displayed by the Python script to the partici-

pants after fuzzing concludes. 59

4.3 Occurrences of distinct servers submitted under separate participant IDs. . . 61

4.4 Overall average percentages of the unit tests’ basic block coverage among all

study participants. 63

4.5 A summary of the 55 distinct web servers submitted throughout the CS 3214

study. 66

4.6 The three bug categories determined by examining the 48 discovered bugs. . 66

4.8 Source functions from which NULL return values originated. 68

4.7 C code depicting bugs originating from the failure to check a return value. . 68

4.9 C code depicting a buffer overflow bug. 69

4.10 C code depicting a buffer underflow bug. 70

xiii

4.11 C code depicting an out-of-bounds memory read bug. 70

4.12 C code depicting an out-of-bounds memory read bug. 71

4.13 Example Bug 1 - The comux input file generated by Gurthang. 72

4.14 Example Bug 1 - The target web server crashes when given the input file. . . 73

4.15 Example Bug 1 - The web server’s post mortem stacktrace (GDB). 74

4.16 Example Bug 1 - Examining the NULL pointer returned from a call to strtok_r(). 75

4.17 Example Bug 2 - The comux input file generated by Gurthang. 76

4.18 Example Bug 2 - The target web server crashes when given the input file. . . 76

4.19 Example Bug 2 - The web server’s postmortem stacktrace (GDB). 77

4.20 Example Bug 2 - Viewing the parsed Content-Length header as -47 (GDB). 78

4.21 Example Bug 2 - Witnessing a stack-local variable be overwritten in an out-

of-bounds write (GDB). 78

4.22 Example Bug 3 - The comux input file generated by Gurthang. 79

4.23 Example Bug 3 - The target web server crashing when given the input file. . 79

4.24 Example Bug 3 - The web server’s postmortem stacktrace (GDB). 80

4.25 Example Bug 3 - The faulty source code causes an invalid read far from the

original location. 81

4.26 A histogram of the number of submissions made across the 55 web servers. . 82

4.27 Bug Fix Example - The crash-inducing comux file contains a malformed

Cookie HTTP header. 83

xiv

4.28 Bug Fix Example - Running the web server through GDB shows the location

of the crash. 84

4.29 Bug Fix Example - The source code reveals the bug: the failure to check for

a NULL return value from strtok_r(). 85

4.30 Bug Fix Example - Running the same input file with a newer version of the

same web server shows it no longer crashes. 86

4.31 Bug Fix Example - The newer submission’s source code shows the participant

added a return value check to fix the bug. 87

xv

Chapter 1

Introduction

Computing has become central to life in the twenty-first century. This is exemplified by the

host of services accessible via the Internet. Many of these services are powered by special

computer programs called network servers (or web servers) that communicate with users

via the Hypertext Transfer Protocol (HTTP). Often times these servers deal with private and

sensitive information that, if compromised, would create serious problems for users. Present

risks mean those who use an online service must trust the security of these web servers. The

security of a web server, just like any other computer program, directly correlates to the

number of exploitable bugs it harbors.

If a bug that was overlooked during a web server’s development is discovered by a malicious

user on a live web server, it may open the door to denial of service attacks (i.e. bringing

down a service and preventing others from accessing it), information theft (stealing user

information), or other forms of compromise. Thus, to reduce the risk of catastrophic attacks,

the discovery and elimination of as many bugs as possible must happen during development,

before a web server is used to host a live, Internet-connected service.

Bug discovery during development heavily depends on the testing methods used. One such

technique, called fuzzing (or fuzz-testing), tests a program repeatedly in an automated

fashion. Special programs, called fuzzers, exist specifically to perform this technique on

other applications (target programs). Fuzzers operate by repeatedly sending specially-

crafted inputs (called test cases) to a running instance of the target program. During each

1

2 CHAPTER 1. INTRODUCTION

run, the fuzzer taps into a feedback loop to learn how the target program processed a test

case. Fuzzers create new test cases on the fly by making small incremental adjustments to

existing test cases, or by generating new ones from scratch. In either case, many fuzzers

employ several strategies to create test cases that are capable of triggering new behavior

in the target program. Fuzzers use the knowledge of new execution behavior as a way to

guide their efforts toward the discovery of new bugs. A fuzzer’s feedback loop depends

on its implementation and the manner in which the target program is available. Some

fuzzers simply observe the target program’s output to discover changes in behavior. Other

fuzzers use more advanced techniques to compile a special version of the target’s source code

capable of informing the fuzzer exactly which parts of the target program were executed when

processing a test case; this is called coverage-guided fuzzing. What feedback is available to

a fuzzer dictates the selection of future test cases.

1.1 Challenges of Fuzzing Network Applications

Web servers and other network-based applications behave differently than typical programs

targeted by most fuzzers because the manner in which a web server receives input is different

from that of programs which take input from files or input streams. In addition, there are

other qualities to web servers and the network stack that are challenging to fuzz. Below,

we have outlined three main challenges of fuzzing network applications that our research

pursues.

Challenge 1 - Input Management. Network applications communicate with other ma-

chines across a network. As such, they read input through bytestreams over active connec-

tions with clients, which are not pre-connected at startup time and are typically created

on demand. This constraint means that state-of-the-art fuzzers are not compatible with

1.1. CHALLENGES OF FUZZING NETWORK APPLICATIONS 3

Figure 1.1: Challenge 1 - Input Management. The common case (top) allows for fuzzers
to make use of the standard input stream to transmit test cases to the target program.
Network servers (bottom) can read input only through a dynamic network connection.

network applications and web servers, due to their assumption of a standard bytestream au-

tomatically opened at runtime. This makes fuzzing web servers difficult. Web server fuzzing

thus requires modification of source code (a tedious task) or a custom solution. Successful

attempts have been made to develop libraries that integrate web server fuzzing with state-

of-the-art fuzzers, but certain limitations exist in these solutions, such as the inability to

handle multi-threaded applications and the need for source code modification [45].

Challenge 2 - Fuzzing Across Multiple Connections in Varying Order. An effective

web server must support multiple concurrent client connections. Either by managing multiple

threads or using asynchronous event handling, servers multiplex several connected clients at

once to prevent one client from hogging the server and delaying the service of other clients.

Additionally, the server must gracefully handle any unexpected delays, and must be prepared

for unpredictable orderings of connection creation and message delivery. Existing solutions

for fuzzing web servers do not support the use of multiple concurrent client connections [39,

45]. This lack of support means that any bugs relating to shared state and concurrency likely

will not be found during fuzzing, since only one connection is tested for each execution of

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Challenge 2 - Fuzzing Across Multiple Connections of Varying Order.
Existing network server fuzzing solutions can only send a single test case across a single
connection to the target web server (top). Not only must multiple connections be exercised
to discover concurrency bugs, but the order in which data arrives through these connections
should also be changed to examine the server’s behavior in the fact of varying message
ordering. (bottom).

the target program.

Challenge 3 - Fuzzing Message Boundaries. Network protocols implement several

mechanisms for ensuring reliable delivery of data across a connection. In the Transmission

Control Protocol (TCP) and Internet Protocol (IP), one application-level message may be

split into several packets when sent across a network connection [35]. Underlying constraints

in the network stack may affect the manner in which these packets are received by a network

server. One example is the size of the receiving machine’s kernel packet queue. Another

example is the possibility of delays between the delivery of packets. Additionally, the server

itself may not provide a buffer with enough memory to read a full message in a single

iteration of its logic. These constraints often require network servers to perform multiple

1.2. PROPOSED SOLUTION 5

Figure 1.3: Challenge 3 - Fuzzing Message Boundaries. This figure depicts three HTTP
messages, split among several TCP segments, being sent to a web server. The receiver’s queue
has buffered segments 1-3, comprising the first HTTP message and a portion of the second
message. Segments 4-6 are still in transit.

read operations before seeing a full application-level message. Thus, web servers must be

able to recognize the message boundaries of the protocol they are communicating with and

choose when to stop listening and start processing. Just as many state-of-the-art fuzzing

solutions for web servers do not support multiple concurrent connections, they also lack

the ability to manipulate the ordering and timing with which the data is sent across each

connection in order to test the server’s ability to process message boundaries and handle

delays.

1.2 Proposed Solution

To address these challenges we developed Gurthang, a framework for web servers that enables

fuzzing with much less developer effort and introduces new fuzzing strategies. Gurthang

takes advantage of coverage-guided fuzzing by instrumenting the target web server’s source

code using existing state-of-the-art fuzzing tools. Gurthang supports the fuzzing of multiple

concurrent connections as well as the ordering of data delivery. It can fuzz both single-

threaded and multi-threaded servers and does not require the modification of the target

6 CHAPTER 1. INTRODUCTION

server’s source code. Three main components make up Gurthang:

• We designed the Input Bridge as a library that enables web servers to read fuzzer test

cases from the standard input stream without any modification to the source code. We

achieved this by implementing a shared library we interpose at run-time. The input

bridge establishes internal connections to the target web server and feeds bytes from

the fuzzer through to each active connection. Our implementation makes these internal

connections indistinguishable to what the web server would interact with in a native

environment.

• We designed the The Comux File Format to specify the content and ordering of

multiple connections with the target web server, all from a single file. We organized the

information in each comux file to allow the other two major components of Gurthang

to articulate exactly what to send to the target server, which connection to send it

across, and when to send it relative to the other connections.

• We designed the The Comux Mutator to accept existing fuzzer test cases (in the form

of comux files) and perform mutations to produce new test cases. This component

orchestrates all mutations during a fuzzing campaign and is capable of mutating both

the data being sent to the target web server and the manner in which it is sent.

We created Gurthang to address the three challenges described above. Gurthang addresses

Challenge 1 with its Input Bridge. It feeds fuzzed test cases to the target web server

through active network connections. We accomplish this while maintaining the server’s

native behavior and avoiding the modification of its source code. Gurthang addresses Chal-

lenge 2 with both its Input Bridge and Comux File Format. Comux files specify a number

of connections to be established with the target server, the exact content to send through

each connection, and the order in which connections are established and data is sent. The

1.2. PROPOSED SOLUTION 7

Figure 1.4: A high-level view of Gurthang’s architecture.

Input Bridge parses a comux file and carries out the creation and management of these

connections exactly as specified. Thus, through the contents of a single test case, Gurthang

can fuzz multiple concurrent connections with the target web server. Gurthang addresses

Challenge 3 with its Comux Mutator. It uses several strategies to create new test cases.

Some of these strategies operate directly on the metadata stored within a comux file. This

metadata specifies the order and manner in which connections are to be established and data

is to be sent. Modifying comux metadata means the Comux Mutator can change both the

data sent to a web server and vary the instructions that describe how the data is to be sent

across the network. Our high-level architecture of Gurthang is shown in Figure 1.4.

8 CHAPTER 1. INTRODUCTION

1.3 Contributions Made

Our goals with this research are to simplify the fuzzing process for a variety of web servers,

enable the fuzzing of multiple concurrent connections to the same web server, and show that

Gurthang is capable of discovering bugs in web servers. We make the following contributions:

• A novel and simple approach to fuzzing web servers. While varying solutions

exist for fuzzing web servers, Gurthang is novel in its ability to establish multiple

concurrent connections with the target web server in a single execution during a fuzzing

campaign. It also introduces simplicity and ease-of-fuzzing; users need not modify

the source code of target web servers, and fuzzing can occur simply by loading the

Gurthang libraries at run-time. The input bridge loads into the web server and the

comux mutator loads into the fuzzer.

• Our open-source implementation of Gurthang. We have open-sourced our fully-

functional implementation of Gurthang on GitHub to encourage its continued use and

evaluation in fuzzing. Extensive documentation and our heavily-commented source

code is included in the repository, which is available at https://github.com/cwshugg/

gurthang.

• Evaluation across several web servers. Gurthang was evaluated through a study

at Virginia Tech that invited students of CS 3214: Computer Systems to utilize

Gurthang to fuzz web servers as a voluntary part of their coursework. We evaluated

Gurthang with 55 distinct web servers submitted during the study and discovered 48

bugs. In addition to the study, we evaluated Gurthang against two industry standard

open-source web servers: Apache and Nginx.

• Real bug discoveries. During our evaluation study in Virginia Tech’s CS 3214

https://github.com/cwshugg/gurthang
https://github.com/cwshugg/gurthang

1.4. THESIS ROADMAP 9

course, Gurthang discovered bugs in 29 of the 55 servers. We analyzed and discovered

48 legitimate bugs that spanned three major categories: the failure to check return

values, out-of-bounds memory writes, and out-of-bounds memory reads. Gurthang did

not discover any bugs on Apache or Nginx, but the evaluation still provided insight

into Gurthang’s ability to easily test a variety of servers.

1.4 Thesis Roadmap

Following this introduction, we discuss background information required to understand this

research in Chapter 2. We discuss Gurthang’s design and implementation details in Chapter

3. We discuss our evaluation of Gurthang in Chapter 4. We discuss related research in

Chapter 5 and an outline of future work in Chapter 6. Finally, we bring a conclusion to this

research in Chapter 7.

Chapter 2

Background

2.1 Fuzzing

Fuzzing (or fuzz-testing) is an automated software testing and security technique that

involves giving a program unexpected input with the intention of crashing the program or

altering its behavior [15]. Finding an input that crashes the program-under-test (target

program) opens the door for exploitable vulnerabilities, which will be described in Sec-

tion 2.1.6. Fuzzing is done in an automated fashion by computer programs (called fuzzers)

developed for this sole purpose. Fuzzers automate a simple question: which test cases trigger

crashes or undefined behavior when a program processes it? They can attempt hundreds

or thousands of test cases per second while using this question to search for undiscovered

program behavior to find bugs.

2.1.1 The Origins of Fuzzing

The concept of fuzzing was brought into existence by Barton Miller at the University of

Wisconsin-Madison in 1989 [15, 36]. Originally, this was in the form of a class project where

students wrote programs to generate random inputs and command-line arguments for Unix

utilities to seek out flaws in the utilities’ code. Miller and other researchers revisited this in

1995 to perform fuzzing on a number of open-source and closed-source Unix and Windows

10

2.1. FUZZING 11

Figure 2.1: Depiction of a standard fuzzing loop. The fuzzer utilizes its feedback loop to
decide how to produce future test cases.

utilities [32]. Since its inception in 1989, fuzzing has grown enormously as a field and has

taken on many shapes to become an important part of software testing.

2.1.2 Types of Fuzzers

Several large-scale fuzzers have been developed and refined throughout the past two decades

to employ varying strategies. These fuzzers differ in terms of coverage awareness and test

case creation strategies.

Coverage Awareness

Miller’s original concept captured the essence of what is now known as black-box fuzzing.

Black-box fuzzing operates on the notion that the fuzzer knows nothing about the internal

workings of the target program, instead making simple random changes to existing test

cases [19]. The only feedback a black-box fuzzer has is the target program’s output. In

many cases, a program may output the same thing despite having changed its internal

behavior. In other cases, it may not output anything at all. This lack of feedback means

12 CHAPTER 2. BACKGROUND

black-box fuzzers must rely on a versatile set of initial test cases and intelligent test case

creation to exercise as much target behavior as possible [19].

Grey-box fuzzing and white-box fuzzing came after black-box fuzzing. As the name

suggests, white-box fuzzing indicates having all knowledge about the program’s internal be-

havior and using it to craft suitable inputs. Grey-box fuzzing lies on a spectrum between

black-box and white-box fuzzing by assuming some knowledge of the target program’s inter-

nal behavior.

Grey-box fuzzing, the most explored category, was made both popular and accessible by

the creation of AFL, a fuzzer capable of understanding how the target program’s internal

behavior changes when its input changes. AFL accomplishes this through its compile-time

code instrumentation, which we discuss below in Section 2.1.5 [57].

Grey-box and white-box fuzzers possess a feedback loop more capable of understanding the

target program’s behavior during execution. This allows them to learn which test cases are

more successful at triggering new behavior in the target program and use this knowledge to

select these cases and derive new test cases from them.

Input Mutation vs. Input Generation

Two main strategies exist for input creation: mutation and generation [19, 29]. Muta-

tion takes a given set of valid inputs (typically called an input corpus) and makes small

incremental changes to them during the fuzzer’s execution. The mutations made typically

involve bitwise or bytewise operations, such as:

• Random bitflips

• Inserting bytes

2.1. FUZZING 13

• Removing bytes

• Changing a byte’s value

Many general-purpose fuzzers rely solely on test case mutation, as they are not aware of the

target program’s input syntax and must rely only on an initial set of test cases to mutate in

order to achieve results.

Generation takes a specification of the target program’s input syntax (or grammar) and

generates inputs from scratch that obey this specification. This approach creates test cases

that follow the syntax and semantics of the target program’s expected input, making it much

easier to exercise the target’s behavior past its initial syntactic and semantic checks [19].

Generation-based fuzzers have been shown to find deeper execution behavior (and bugs) in

certain programs [2, 46]. However, this approach is less general and as such syntax-aware

generation-based fuzzers require more target-specific development.

2.1.3 Basic Blocks

Many grey-box fuzzers use knowledge of the target program’s basic block coverage in their

feedback loop for test case creation. The concept of a basic block relates to the control-

flow structure of a computer program. A basic block is defined as a straight-line sequence of

machine instructions containing a single entry point and a single exit point [1]. In terms of

assembly code, a basic block would make up the assembly instructions between two condi-

tional branch instructions, because they cannot change course and will always execute in the

exact same order. Basic blocks are highly important in compiler design, but have also been

used by coverage-guided grey-box fuzzers to measure the control-flow path a target program

takes when processing a test case.

14 CHAPTER 2. BACKGROUND

2.1.4 LLVM

The LLVM Project (short for Low Level Virtual Machine) is a compiler framework

that provides advanced compilation infrastructure and a variety of static and dynamic code

analysis tools [23]. Some of these tools operate on a program at run-time to detect issues

during the program’s execution. These are called Sanitizers; several exist to fulfill different

purposes:

• UBSan (UndefinedBehaviorSanitizer) detects undefined behavior in a program [50].

• ASan (AddressSanitizer) detects memory errors in a program [51].

• TSan (ThreadSanitizer) detects data races in multi-threaded programs [53].

Other LLVM tools enable the tracking of basic block execution throughout a program’s

execution. LLVM’s SanitizerCoverage provides compile-time instrumentation that injects

calls to custom, user-defined functions at every basic block within a program [52].

2.1.5 AFL and AFL++

AFL stands for American Fuzzy Lop. It is a grey-box fuzzer created and originally released

in 2014 by Michał Zalewski. It sparked the heavy usage of grey-box fuzzing through source

code instrumentation for many fuzzers created thereafter [12, 57]. AFL has found bugs across

hundreds of open-source applications since its creation, and many researchers have created

forks of the original that build on its strengths and pursue specific goals [4, 11, 33, 39, 58].

AFL implements a custom compiler pass that instruments the target program with assembly

code placed at the start of each basic block [12, 57]. Originally, this instrumented assembly

2.1. FUZZING 15

code was hand-written by Zalewski, but it was later replaced with LLVM’s Sanitizer Cover-

age. At run-time, AFL sets up a shared memory region between itself and the target program.

When the target executes a basic block, the inserted instrumentation code uses this memory

region to record this fact, allowing AFL to learn which basic blocks were explored during the

target program’s execution. When new sequences of basic blocks are detected, AFL deems

the most recent input as interesting (having triggered new behavior in the target program)

and recycles it back into the queue of to-be-tried test cases. In this way, AFL achieves a grey-

box feedback loop that allows it to reuse interesting inputs based on the target program’s

behavior.

In the years since AFL’s creation, several researchers in the fuzzing community have de-

veloped AFL++, a fork of AFL that vastly improves on AFL’s instrumentation abilities and

performance [9, 11]. It also adds a higher degree of customizability through custom mutator

support, a variety of settings to adjust performance, and more [9].

AFL++’s custom mutator support allows for developers to create a shared library that im-

plements an API for AFL++ to invoke. In this way, AFL++ can be modified at run-time to

become aware of the input syntax of a target program [9]. This feature has been used to

create mutation strategies that are aware of the input syntax grammar to make AFL++ a more

effective fuzzer [21]. We chose to use AFL++’s custom mutator support in our implementation

of Gurthang.

Like its predecessor, AFL++ has been used to find several bugs in many well-known open

source projects [9]. Furthermore, it is backed up by a large community of fuzzing researchers

who continually make improvements to it.

16 CHAPTER 2. BACKGROUND

2.1.6 Memory-Related Vulnerabilities

The OWASP Foundation and the National Vulnerability Database both maintain a running

list of known categories of security vulnerabilities found in software [7, 15, 16]. Many of

these categories stem from illegal memory operations in type-unsafe languages such as C.

They include:

• Buffer Overflows. These occur when a program writes to memory past the end of a

buffer. It is unknown what was overwritten, and as such often times causes undefined

and unpredictable behavior.

• Null Pointer Dereferences. These occur when a program fails to check for a NULL

pointer and attempts to use a pointer variable as if it was not NULL.

• Double Memory Frees. This occurs when dynamically-allocated memory is freed

twice. The first time is valid, but the second time will often corrupt the memory

allocator’s internal data structures, causing a segmentation violation, abort, or other

crash.

• Use-After-Frees. This occurs when dynamically-allocated memory is accessed after

it has been freed. Once freed, this memory no longer belongs to the program, and as

such a use-after-free can cause undefined behavior, often ending in a crash.

• Uninitialized Memory Accesses. As a program executes, portions of its stack

and heap memory may be reused. When this occurs, stale, unpredictable values are

present in memory. If a program fails to properly reset this memory before accessing

it, undefined behavior is likely to occur.

These memory-related vulnerabilities, if left unfixed in a program, may make exploitation of

the program possible for a malicious user. With exploitation comes the denial of services for

2.2. NETWORKING FUNDAMENTALS 17

other users, data theft, and additional situations that can inflict great damage to the soft-

ware’s users. Because of the risks they introduce and how common they are in many software

projects, fuzzers are well-suited to finding memory-related vulnerabilities. In addition, they

are especially easy to overlook in lower-level programming languages such as C, which has

motivated some large software projects, to ban the use of certain unsafe C functions within

their source code [55]. While helpful, the banning of unsafe functions does not remove the

possibility of creating memory vulnerabilities during development.

2.2 Networking Fundamentals

2.2.1 TCP - Transmission Control Protocol

The Transmission Control Protocol is a network transport protocol that orchestrates the

sending and receiving of data across a network between two communicating machines. TCP

was originally designed for use by the United States of America’s military to ensure reliable

delivery of data across unreliable networks (RFC 793) [35]. It is a connection-oriented proto-

col; before data can be exchanged between two entities, they must first establish a connection

by performing TCP’s three-way handshake (an exchange of specific indicators to demonstrate

a desire to communicate). The entities must also exchange similar acknowledgements before

closing the connection at the end of conversation.

TCP is responsible for delivering data from one running process to another, either on the

same machine, or across different machines. It utilizes Internet Protocol (IP) addressing to

route data from the sender to the receiver. The data is sent across one or more TCP seg-

ments, each residing inside an IP packet. TCP builds sequence numbers and other metadata

into each segment to detect failures and re-transmit segments when necessary [5]. TCP addi-

18 CHAPTER 2. BACKGROUND

tionally uses congestion control mechanisms to protect the network from congestion. When

a high number of segments are lost in transit (indicating a congested network), the sender

decreases its sending rate and waits longer periods of time for acknowledgements from the

receiver (RFC 5681)[25]. On the receiving end, TCP’s flow control allows for the receiver

to advertise a maximum amount of data it is willing to receive. The data is queued by the

receiver’s kernel. New data can be queued only when the receiving application empties the

queue with a read operation.

TCP’s reliability guarantees make it an attractive protocol for network applications. Linux

and other operating systems implement TCP within their kernel, providing an abstraction to

applications appearing as simple bytestream read/write operations. This abstraction allows

applications to use TCP without worrying about reliability. However, applications using

TCP may experience delays when networks are congested. They also may experience short

reads: a situation where less bytes are read from a TCP connection than what was antici-

pated in a single read operation of the application. Short reads prevent a full application-level

message from being received in one iteration in the application’s logic. They’re caused by

delays in TCP segment delivery and the limited size of the underlying kernel’s receiving

queue. Multiple read operations must be performed to overcome this. Network applications

must be implemented to handle the delays and short reads TCP produces.

Most web servers utilize TCP to send messages across a network. These servers thus are im-

plemented to handle delays in data delivery and recognize application-level message bound-

aries across several read operations. Not only is it beneficial to test a server by manipulating

the messages it receives, but it is also beneficial to exercise the server’s ability to handle

TCP’s delays and short reads. Our research seeks to test both aspects through fuzzing.

2.2. NETWORKING FUNDAMENTALS 19

GET /index.html HTTP/1.1
Host: example.server
Accept: text/html

Figure 2.2: An HTTP request message depicting a GET request for /index.html.

2.2.2 HTTP - Hypertext Transfer Protocol

HTTP is an application-level protocol that was designed primarily to organize the transfer

of hypertext (formatted text with hyperlinks that makes up web pages) across networks

(RFC 7320) [41]. HTTP uses a request/response model. The sender (typically called a

client) establishes a TCP connection to a recipient (typically called a server) connected to

the Internet and sends forth an HTTP request message to ask for a resource. The server

processes the HTTP request message and sends an HTTP response back to the original

sender (the client), which contains the requested resource or some other appropriate error

message. HTTP request and response messages are exchanged in a simple, human-readable

format. Network applications that communicate with HTTP must conform to this format.

If an application violates this message format while communicating across a network, it may

cause a lack of service, the premature end of communication, or in extreme cases, undefined

behavior and the triggering of bugs in faulty software. Because this research focuses on

fuzzing web servers that communicate with HTTP, it is important to understand the rules

an application must follow to properly use this protocol, and by extension, the ways in which

a fuzzer might be able to intentionally violate these rules to discover bugs.

Request Messages

Request messages are formatted to contain the following lines of text:

20 CHAPTER 2. BACKGROUND

POST /api/login HTTP/1.1
Host: example.server
Accept-Encoding: identity

{"username": "user", "password": "pass"}

Figure 2.3: An HTTP request message depicting a simple authentication request.

1. A request start line

2. A number of HTTP header lines

3. An optional message body

Request Start Line

The request start line consists of three separate pieces, each separated by a single space: a

method token, the request target, and the HTTP version [41]. The method token is

a case-sensitive string specifying what action the requester wishes to perform. Eight different

request methods exist as specified by RFC 7231 [42]:

• GET requests the current representation of the target resource. (Such as a website’s

home page.)

• HEAD makes the same request as GET, but asks that the sender responds only with the

response status line and header lines.

• POST performs resource-specific processing on the payload send with the HTTP request.

(Such as sending authentication information to log into a website.)

• PUT replaces all current representations of the target resource with the payload stored

in the request message.

2.2. NETWORKING FUNDAMENTALS 21

• DELETE removes all current representations of the target resource from the server’s

storage.

• CONNECT establishes a tunnel to the server by the specified target resource.

• OPTIONS asks the server for the usable request methods for the specified target resource.

• TRACE performs a message loop-back test along the path to the specified target resource.

The request target specifies the particular resource the requester is asking to interact with.

Common examples are web pages (.html files), style sheets (.css files), JavaScript code to

run inside a web page (.js files), images (.png files being one example), and any other file

type that might be served as part of a complete web page.

The HTTP version specifies the particular version of HTTP the requester is using. By

sending this as part of the request, the server will know how to format its own response in

order to match the specific HTTP version in use.

Request Header Lines

Both HTTP request and response messages have header lines. Some headers are only used

in requests, others are only used in responses, and others are used in both [41]. Request

headers are used to attach specific pieces of information to the request. They tell the server

what resource is being requested and how the request should be handled.

Each header consists of two fields: the header name, and the header value. These two fields

are separated by a colon (":"). Figure 2.2 depicts a simple HTTP GET request with two

header lines specifying the Host and Accept-Encoding headers. Similarly, Figure 2.3 depicts

a simple HTTP POST request with two header lines specifying the Host and Accept-Encoding

headers.

Request Message Body

22 CHAPTER 2. BACKGROUND

HTTP/1.1 200 OK
Server: example.server
Content-Type: text/html
Content-Length: 52

<html>
Hello, this is index.html's contents.
</html>

Figure 2.4: An HTTP response message depicting a possible response for a GET request for
/index.html

HTTP/1.1 403 Forbidden
Server: example.server
Content-Type: application/json
Content-Length: 37

{"message": "Incorrect credentials."}

Figure 2.5: An HTTP response message depicting a possible response for a failed login
attempt.

HTTP requests can optionally contain a message body. A client can write additional in-

formation into the body that may be needed by the server to meet a specific request [41].

Some potential uses of the request message body would be to send the server authentication

information or upload a file to the server in a PUT request. The message body is placed after

all request header fields with a blank line between itself and the final header. Figure 2.3

depicts this with a POST request sending a small JSON payload as the request message body.

Response Messages

HTTP response messages are formatted similarly to HTTP request messages, with the only

difference being the start line. The start line in an HTTP response message is instead called

2.2. NETWORKING FUNDAMENTALS 23

the status line. Responses still contain a variable number of HTTP headers and an optional

message body.

Response Status Line

The HTTP response status line contains three space-separated fields: the HTTP version,

a numeric status code, and a plain text response phrase. The HTTP version is formatted

exactly the same as the request message’s version and indicates the HTTP version the server

used to build the response message and process the client’s request.

The status code and reason phrase exist to describe the result of the server’s work after

processing the client’s request. Multiple possible response codes exist for a single request,

depending on how the client made the request and/or what was included in the request.

Status codes are three-digit numbers which are grouped into multiple categories [42]. A few

common status codes (with their corresponding reason phrases) are listed below.

• 200 OK - indicates a successful resource access.

• 206 Partial Content - indicates a successful resource access where only a portion of

the resource has been sent in the response message.

• 300 Moved Permanently - indicates that the location of a resource has been moved to

a different location. (Used to point the client to the correct resource location.)

• 400 Bad Request - indicates that the client sent a request that was formatted in an

unexpected way and that the server cannot or will not process the request.

• 403 Forbidden - indicates the server understood the client’s request but refuses to

authorize it.

• 404 Not Found - indicates the server couldn’t find the resources requested by the

client.

24 CHAPTER 2. BACKGROUND

• 500 Internal Server Error - indicates the server encountered an unexpected inter-

nal error that prevented it from processing the client’s request.

Response Header Lines

HTTP response headers are formatted exactly the same as HTTP request headers. Response

messages use a different set of headers to send the client pieces of information as to how the

request was processed and what the server is sending back to the client.

Figures 2.4 and 2.5 depict HTTP responses with the Server, Content-Type, and

Content-Length headers.

Response Message Body

In the same manner as an HTTP request, HTTP responses can optionally contain a message

body to send back additional information to the client. Common uses of the message body

in response messages are sending files to the client (such as a .html or .json) or returning

a message to the client in a specific format. Figure 2.4 depicts a response message in which

the contents of a requested file (index.html) are included in the message body.

Cookies

HTTP has a variety of headers that may be included in a request or response message.

One such header is the Cookie header. Cookies are small pieces of data that clients can

receive from a server that persist across multiple request/response exchanges. A client’s

responsibility upon receiving a cookie is to store it and send it back to the server with any

subsequent requests. The server, upon receiving this cookie, recognizes it and is able to

acknowledge that the client successfully performed some previous request.

The need for cookies arises from HTTP’s stateless structure. After a single request/response

exchange, nothing about the exchange is typically retained by the server and client. Cookies,

2.2. NETWORKING FUNDAMENTALS 25

POST /api/login HTTP/1.1
Host: example.server
Accept-Encoding: identity

{"username": "correct_name", "password": "correct_pwd"}

Figure 2.6: An HTTP request message depicting a simple authentication request.

HTTP/1.1 200 OK
Server: example.server
Content-Type: application/json
Content-Length: 32
Set-Cookie: auth_token=eyJhbGciOiJIUzI1N...

{"message": "Login successful."}

Figure 2.7: An HTTP response message depicting the server’s response to a successful login
attempt. Note the Set-Cookie header with a shortened example of a cookie.

however, were implemented to add state awareness to HTTP, and thus drive most custom

authentication systems on modern web servers (RFC 6265 and 7231) [3, 42].

The Set-Cookie header is used by the server in an HTTP response to inform the client of

a cookie it should remember. Once the client receives and stores the cookie given in the

server’s Set-Cookie header, it may use it in subsequent requests to the server by placing

the cookie in a Cookie header within its request message. Figures 2.6, 2.7, and 2.8 depict

a series of requests and responses in which a login attempt is successfully made, a cookie is

returned to the client, and the cookie is used by the client to request a privileged resource.

Multiple cookies can be specified within the same Cookie header by placing a semicolon

(";") and a space between each cookie [3]. Web servers must be capable of safely parsing

cookies and avoiding undefined behavior when a syntactically-incorrect cookie is sent by a

client. The parsing of Cookie headers is one part of a web server’s implementation that can

26 CHAPTER 2. BACKGROUND

GET /private.html HTTP/1.1
Host: example.server
Accept: text/html
Cookie: auth_token=eyJhbGciOiJIUzI1N...

Figure 2.8: An HTTP request message depicting the client choosing to use a previously-
received cookie in order to gain access to a private file.

be directly tested by a fuzzer. Fuzzers can reach this functionality by manipulating Cookie

headers to remove semicolons, change cookie names, change cookie values, add extraneous

characters, and more.

2.2.3 Web Server Concurrency Design

The emergence of Internet-connected services has not only increased the deployment of

HTTP web servers, but it has also increased the amount of traffic a web server must handle

each day. In addition to this, certain operations performed by a web server may not complete

immediately, such as waiting for a connected client to finish sending an entire HTTP request

message. These factors require efficient web servers to multiplex several connected clients

at once to optimize their performance. To do this, various concurrency models have been

created.

The Apache Server Project’s Multi-Processing Modules (MPMs) implements several

concurrency models that split the work of accepting client connections and handling client

requests into multiple threads or processes [14]. Its prefork module implements a multi-

process model that splits tasks among the several worker processes spawned throughout the

server’s lifetime [14]. The worker module implements a hybrid concurrency model using mul-

tiple processes and multiple threads. Similarly, the developers of Nginx (another widely-used

HTTP web server) implement a multi-process model similar to Apache’s worker module. It

2.3. OPERATING SYSTEMS FUNDAMENTALS 27

spawns multiple worker processes at run-time, each of which uses a threadpool to parallelize

read and write operations when communicating with connected clients [18, 48].

These (and other) concurrency models introduce great performance benefit into web servers.

This research focuses on multi-threaded web servers; while multiple concurrent threads pro-

vide performance benefit, threads often share resources with one another. One example of

this is user authentication. If two clients send requests to authenticate in order to access

privileged resources, two concurrent threads may need to access the same database (in par-

allel) to verify the two sets of credentials. To avoid race conditions, these accesses must

be protected with thread synchronization, such as Mutual Exclusion locks and/or Condi-

tion Variables. Another example is logging. Web servers often write messages to a log for

examination by a user. Multiple threads may need to write a message to the server’s log

in parallel. Again, thread synchronization is needed. When sharing occurs, there is always

the possibility of concurrency-related bugs. The ability to test a web server by establishing

multiple concurrent client connections may open up the possibility of discovering such bugs.

2.3 Operating Systems Fundamentals

2.3.1 Linux Standard File Streams

In the Linux operating system, file descriptors are used by user-space programs to interact

with files, networking sockets, pipes, and other abstractions that can be read from or written

to. In the C programming language, these file descriptors are represented by simple integers.

An API of Linux system calls exist in the C language and can be used by user-space programs

to perform read and write operations on the abstractions these file descriptors represent.

When any user-space C program is executed, three file descriptors are implicitly and au-

28 CHAPTER 2. BACKGROUND

tomatically opened by the shell for the program to use. These are the standard input

stream, standard output stream, and standard error stream.

• The standard input stream (stdin) has a file descriptor with value 0. This stream

can be used by a program to read input from the user, another process, or a file,

depending on how the program was invoked by the user.

• The standard output stream (stdout) has a file descriptor with value 1. This can

be used by a program to write output to the user, to another process, or to a file,

depending on the program’s invocation.

• The standard error stream (stderr) has a file descriptor with value 2. This stream

can also be used for the program to write output to, but it exists to give the program

a separate channel to write any diagnostic or error output.

These three built-in file descriptors are commonly used by programs to accept input and

display output. Other file descriptors can be opened and closed by the program to perform

read/write operations on other system resources. Many fuzzers, such as AFL and AFL++,

utilize the standard file streams (chiefly stdin and stdout) to feed test cases to a target

program. It is a popular choice because of their universal application to many programs, and

the fact that shells can attach these file streams to pipes, removing the need for temporary

files.

2.3.2 Linux Networking Sockets

As discussed earlier, Linux file descriptors are used to interact with various input/output

resources. One such resource is called a network socket. Sockets are used by a user-space

program to communicate across a loopback network (i.e. on the same machine), a local

2.3. OPERATING SYSTEMS FUNDAMENTALS 29

network, or even the Internet. A series of Linux system calls create an API for a user-space

program to create and interact with sockets in order to communicate with other machines.

These system calls are socket(), bind(), listen(), accept(), connect(), send(), recv(),

and close() [20]. Their purposes are described briefly below.

Server-Side Sockets

A web server operates by creating one or more listener sockets and accepting incoming client

connections through these sockets. The socket() system call is used to allocate a socket file

descriptor and return it to the server. Once created, the server selects an open address and

port and uses the bind() system call to bind the socket to the address and port. listen()

is then used to register the socket as a listener socket; that is, one that will be used to accept

incoming connections.

After the socket setup is complete, the server invokes the accept() system call to wait for

the next incoming client connection. Once a connection is made, a separate file descriptor

is created and returned to be used by the server to communicate with the connected client.

From here, the recv() system call is used to receive bytes sent by the client, and the send()

system call is used to send bytes to the client.

These system calls provide an abstraction for an application to interact with TCP as if it

was a simple bytestream. TCP itself is implemented by the underlying kernel. It is the

programmer’s responsibility to implement any application-level protocols that sit atop TCP

(such as HTTP).

30 CHAPTER 2. BACKGROUND

Client-Side Sockets

Clients connect to a listening server. As such, they do not use the bind(), listen(), and

accept() system calls. The socket() system call is still used to create a new socket file

descriptor. However, once created, the client simply invokes the connect() system call (with

the knowledge of the server’s address and port) to establish a new connection to the server.

Once the connection is established, the send() and recv() system calls are used to send/re-

ceive bytes to/from the server. Just like with the server, TCP is abstracted away by this

socket programming API, and thus the client’s programmer only needs to implement any

protocols that sit atop TCP (such as HTTP).

Fuzzing Network Sockets

Network sockets and the Linux standard file streams are both accessed by programs through

a file descriptor, but they are treated differently by the underlying operating system. Many

state-of-the-art fuzzers can easily support the passing of test cases through standard file

streams, but it is much more difficult for them to support this through network sockets. This

difficulty stems from internal mechanisms that can restrict the repeated usage of network

sockets on a system, such as TCP’s congestion control, a Linux system’s configuration for

loopback connections, and more [25]. This research seeks to address the challenges that come

with supporting network sockets to make fuzzing network servers less difficult.

2.3.3 Linux Shared Libraries & LD_PRELOAD Interposition

Many programs are written with the ability for users to write modules that can be dynam-

ically loaded to support additional functionality. This is accomplished through a shared

2.3. OPERATING SYSTEMS FUNDAMENTALS 31

library that is loaded into the host program at run-time. Often times, the host program

provides developers with an interface of function prototypes that can be implemented to

allow for shared libraries to tap into various features of the host. Once implemented and

loaded, the host program will invoke the library’s functions.

The LD_PRELOAD Linux environment variable is used by the Linux loader and allows for a

special shared library to interpose new behavior onto a program at run-time. Shared li-

braries specified in this environment variable are loaded into the host program and utilize

the dlsym() system call to load existing functions from other shared libraries. Because ap-

plications make system calls through interfaces provided by shared libraries, an LD_PRELOAD

library can access these system call interfaces. By defining its own version of a system call’s

interface, the library can route an application’s invocation of the system call through its

own definition, while also chaining the call to the original version to maintain the expected

behavior. The LD_PRELOAD library’s own version of a system call interface can force the ap-

plication to perform additional computation before invoking the original system call. This

technique opens the door to modifying a program’s behavior at run-time without having to

change the program’s source code.

An LD_PRELOAD library can be used when fuzzing to modify a target program’s behavior

in order to make it compatible with a fuzzer, thanks to its ability to interpose additional

behavior at run-time. This research utilizes this technique to address the challenges of

supporting network sockets when fuzzing by interposing behavior onto a variety of networking

system calls interfaces.

32 CHAPTER 2. BACKGROUND

2.3.4 Linux Process Signals

In the Linux operating system, signals are a way for synchronous or asynchronous alerts

to be sent to running programs (processes). The delivery of these signals can interrupt the

program’s execution and force the process to exit, stop running, continue running, run a

custom signal handler function, or do nothing at all if the program has chosen to ignore the

signal [20]. Several signals exist and are used for different purposes [27]. A subset of them

are listed below:

• SIGINT - (Interrupt) unless handled or ignored, this forces a running program to exit.

• SIGSTOP - (Stop) unless handled or ignored, this forces a running program to halt

execution (but not exit).

• SIGCONT - (Continue) forces a stopped program to continue execution.

• SIGSEGV - (Segmentation Violation) this is delivered to a program if an illegal

memory access is made.

• SIGFPE - (Floating Point Exception) this is delivered to a program if an illegal

floating point operation is performed (such as dividing by zero).

• SIGABRT - (Abort) - this is delivered to a program if the abort() system call is made.

This causes abnormal process termination and is often made when a program detects

an unrecoverable error during its own execution.

Signals can be sent and detected with the use of proper system calls in user-space programs,

but many signals are generated and sent to a running program by the Linux kernel. Some

of these are sent when an illegal operation is performed by the program, indicating a flaw in

the program’s logic that was potentially overlooked by the developer. SIGSEGV, SIGFPE, and

2.3. OPERATING SYSTEMS FUNDAMENTALS 33

SIGABRT are three examples of signals that cause the program to abruptly exit when such a

flaw is detected (i.e., the program crashes). Fuzzers use signals to detect which test cases

cause the target program to crash.

Chapter 3

Design and Implementation

Figure 3.1: Gurthang’s logo, created by Connor Shugg.

In this chapter, we describe the design and implementation details of Gurthang. We placed

the following goals at the heart of Gurthang’s design:

• Enable the delivery of fuzzer test cases through socket connections (Section 1.1 chal-

lenge 1).

• Enable the fuzzing of web servers across multiple concurrent connections with varying

delivery order (Section 1.1 challenge 2).

• Enable the fuzzing of a web server’s message boundary processing code (Section 1.1

challenge 3).

• Design a solution that requires no modifications to the server’s source code.

• Design a solution that can be used with existing state-of-the-art fuzzers.

34

3.1. DESIGN OVERVIEW 35

3.1 Design Overview

Gurthang is a framework to be used in conjunction with existing fuzzers rather than a full-

scale fuzzer capable of operating on its own. It is made up of three major components that

enable a fuzzer to test web servers. Each of Gurthang’s three components serves a different

purpose. They are:

• The Input Bridge

• The Comux File Format

• The Comux Mutator

Gurthang’s mutator is invoked by an existing state-of-the-art fuzzer to parse and mutate

a given file organized in the comux file format. This mutated input is sent by the fuzzer

through the standard input stream to the input bridge. The input bridge parses the comux

file format and establishes connections to the target web server, feeding test case data through

each connection. This process is depicted in Figure 3.2.

Gurthang’s major components translate directly into separately implemented modules. We

implemented the input bridge as a LD_PRELOAD library (in C), discussed in Section 3.3. We

implemented the comux mutator as an AFL++ custom mutator module (in C), discussed in

Section 3.4. We implemented the comux file format as an API for the LD_PRELOAD library

and AFL++ mutator (also in C), discussed in Section 3.2. This section provides a high-

level overview of each component’s design while the remainder of the chapter discusses

implementation details.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.2: A diagram depicting Gurthang’s architecture, and its integration into existing
fuzzers to deliver mutated payloads across multiple concurrent connections to a web server.

3.1. DESIGN OVERVIEW 37

3.1.1 Bridging the Input Gap

To make web servers compatible with some state-of-the-art fuzzers, such as AFL and AFL++, it

is imperative that test cases passed through the standard input stream are fed into a network

connection to the target server. We designed Gurthang’s input bridge to accomplish this.

The fuzzing framework dynamically loads the input bridge code into the target web server at

run-time, which does not require changing a single line of the web server’s source code. The

bridge captures a copy of the web server’s listener socket during its initialization process.

Once captured, the input bridge uses this listener socket to create one or more connections to

the web server. Once these connections are established, the input bridge awaits input from

stdin and sends the parsed data through to the web server via the connections, according

to the specifications within the comux file. Once the server responds, its responses are sent

by the input bridge to the standard output stream (stdout).

This design injects the expected behavior into to target server at run-time. The connections

established by the input bridge allow for the server to behave exactly as it would when

communicating with a real client in a native setting; it cannot tell the difference. When

reading from stdin, the input bridge expects bytes to be formatted in the comux file format,

which we discuss below in section 3.1.2.

3.1.2 The Comux File Format

AFL and AFL++ constrain the contents of a single test case to a single file. In order for

Gurthang to be compatible with these fuzzers, it also must follow this constraint. However,

the input bridge creates multiple connections to the target web server and sends multiple test

cases through these connections. All of this information must be organized within a single

file. To address this, we designed the comux file format.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

The mnemonic comux is short for connection multiplexing. Comux files are made up of

chunks. Each chunk contains a payload and is assigned a connection number and scheduling

value. The connection number dictates which connection the chunk’s payload is to be sent

through, and the scheduling value dictates when the data will be sent to that connection,

relative to all other chunks.

Comux files allow us to specify the following information:

• How many connections to create with the target server.

• The data to be sent through each connection’s socket. (The chunks’ payloads.)

• The order in which these connections are established, and the order in which the data

is to be sent. (Based on the chunks’ scheduling values.)

We designed this file format to contain fields that allow for the specification as to how

data is sent to the target web server. We designed the third component (the mutator) to

perform mutations on the comux metadata itself to modify how the input bridge interacts

with the target web server during fuzzing. (We will discuss the mutator in Section 3.1.3.)

By doing this, Gurthang is capable of changing both the data sent to the target server and

the instructions that specify the manner in which the data is sent by the input bridge.

3.1.3 The Comux Mutator

Whereas we designed the input bridge to make web servers compatible with fuzzers, we

designed the comux mutator to influence the fuzzer itself. An existing fuzzer loads Gurthang’s

mutator at run-time to make mutations while upholding the integrity of the comux file format.

The mutator takes a single comux file as input. It parses this file to learn the number

3.2. THE Comux FILE FORMAT 39

of connections to be made, the number of chunks to be sent, and the order in which to

send chunks. Armed with this knowledge, the comux mutator randomly chooses a mutation

strategy and modifies the comux file to produce a new test case for fuzzer. (The format of a

comux file is not changed during fuzzing.) Through this file format, the comux mutator is not

only capable of standard AFL-like mutations (bitflips, byte changes, etc.) on chunk payloads,

it is also capable of splitting chunks, combining chunks, and modifying chunk scheduling

values to influence how the input bridge will interact with the target web server. A few

examples include:

• Changing the order in which connections are established to the web server.

• Changing the order in which specific chunks of data are sent to the server.

We designed the mutator to uphold the integrity of comux files while also changing how

Gurthang interacts with the target web server.

3.2 The Comux File Format

In this section, we describe the implementation details of the comux file format.

3.2.1 File Layout

The content of a comux file follows the format depicted in Figure 3.3.

The Main Header

The top row represents the main header. Its MAGIC field is a simple 8-byte pattern used

to identify a given file as a comux file. We added the VERSION field in the event the file

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

MAGIC VERSION NUM_CONNS NUM_CHUNKS
C1_ID C1_LEN C1_SCHED C1_FLAGS

C1_DATA
C2_ID C2_LEN C2_SCHED C2_FLAGS

C2_DATA
...

CN_ID CN_LEN CN_SCHED CN_FLAGS
CN_DATA

Figure 3.3: The Comux file architecture. This diagram orders bytes from left-to-right and
top-to-bottom.

format is changed in the future - a 32-bit version number can be specified to support back-

wards compatibility. NUM_CONNS holds a 32-bit unsigned integer representing the number of

connections to be created with the target server. NUM_CHUNKS holds another 32-bit unsigned

integer representing the number of data chunks specified in the file.

Data Chunks

Following the main comux header are the N chunks specified by the NUM_CHUNKS field. A

chunk represents a collection of bytes that is sent to the target server through a specific

connection at a specific time. Each chunk begins with a chunk header, which contains the

following fields:

• CONN_ID - An unsigned 32-bit integer specifying which of the NUM_CONNS connections

this chunk’s data should be sent to.

• LEN - An unsigned 32-bit integer specifying the number of bytes that make up this

chunk’s data.

• SCHED - An unsigned 32-bit integer specifying a scheduling value for the chunk.

Scheduling values dictate the order in which the chunks in a comux file are sent.

3.2. THE Comux FILE FORMAT 41

• FLAGS - A 32-bit integer used to represent bit flags to toggle various settings for the

chunk.

Immediately following the chunk’s header is the chunk’s data bytes, whose length is specified

by the LEN field. Chunks with lower SCHED values are sent before chunks with higher ones,

independent of the connection(s) to which these chunks belong. For example: if a comux file

contained the chunks as specified in Figure 3.4:

Chunk Number (order in file) SCHED CONN_ID

Chunk 0 3 1

Chunk 1 1 0

Chunk 2 0 2

Chunk 3 2 0

Figure 3.4: One example of a possible scheduling of four chunks in a single comux file.

Then data would be sent along three different connections in the following order:

1. Chunk 2’s data would be sent first, to connection 2. (SCHED = 0)

2. Chunk 1’s data would be sent second, to connection 0. (SCHED = 1)

3. Chunk 3’s data would be sent third, to connection 0. (SCHED = 2)

4. Chunk 0’s data would be sent fourth, to connection 1. (SCHED = 3)

We chose to include a scheduling field within each data chunk to allow for the sending order

of data chunks to be easily modified. This gives the Gurthang mutator (described below) the

ability to easily reorder the data sent to a web server, potentially invoking different behavior.

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.2.2 The Comux Toolkit

Along with the comux C API, we developed a command-line program to make interaction

with and modification of comux files easier.

During our evaluation, we used this comux command line client program to create an initial

input corpus for AFL++ by converting a number of plain text files containing HTTP requests

into comux files.

3.3 The Gurthang LD_PRELOAD Library

We implemented Gurthang’s input bridge as a dynamic shared library in C in order to

override the definitions of a number of system calls typically made by web servers:

• accept()

• accept4()

• listen()

• epoll_wait()

• epoll_ctl()

By using the LD_PRELOAD mechanism discussed in Section 2.3.3 we are able to interpose a

program’s calls to these system calls.

The Gurthang LD_PRELOAD library invokes dlsym() to look up the addresses of each system

call and replaces them with custom implementations defined in the library [28]. The custom

version of listen() intercepts the web server’s listener socket file descriptor and saves a

3.3. THE Gurthang LD_PRELOAD LIBRARY 43

Figure 3.5: A depiction of the internal workings of the Gurthang LD_PRELOAD library, and
its interaction with the target web server.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

copy. Afterwards, once the server invokes accept(), accept4(), or an epoll function for

the first time, the library spawns threads to manage the remainder of the library’s work

alongside the server’s execution.

3.3.1 Internal Threading

The target web server may spawn multiple threads, or it may not. Because of this uncertainty,

and because we do not want to hijack server threads to perform the library’s work, the

Gurthang LD_PRELOAD library spawns a number of its own POSIX threads [20]. The most

important of these is the controller thread.

As mentioned above, when the server invokes accept() or another appropriate system call

indicating the server is ready to accept a new client connection, the LD_PRELOAD library’s

custom version spawns the controller thread. The controller thread initially reads bytes from

stdin and parses it as a comux file. Parsing enables the thread to understand the number

of connections that must be made with the target server, as well as the number of comux

chunks that must be processed.

From here, it manages the spawning and joining of chunk threads. Following the order of

the chunks’ scheduling values, the controller thread spawns a chunk thread for each chunk.

The chunk scheduled first is handled by a thread while the controller waits for it to complete.

Then, a thread for the second-scheduled chunk is spawned. This repeats until all chunks

have been processed, at which the controller thread forces the server (and itself) to exit.

Each chunk thread is responsible for handling the delivery of a single chunk’s data to the

server across its assigned connection. Once spawned, the chunk thread looks up the correct

socket that represents its assigned connection via the connection table (described below).

Then, the thread parses the chunk’s payload and sends the bytes to the server across the

3.3. THE Gurthang LD_PRELOAD LIBRARY 45

correct socket. If the controller thread instructed the chunk thread to do so, it will wait

for a response from the server after sending its chunk’s data. (This will be done if the

chunk thread is handling the final chunk for a connection.) By spawning a chunk thread for

each comux chunk, we can easily manage multiple active socket connections by designating

a single socket to each thread. Handling all connections in a single thread would require a

much more complex design.

3.3.2 Connection Table

Several chunks, despite being spread across the comux file, may be assigned to the same

connection. The LD_PRELOAD library must send all of these same-connection chunks using

the same socket file descriptor. On top of this, the order in which chunks are scheduled may

interleave communication across multiple connections.

This means each chunk thread needs a way to look up the socket it should use for its

assigned connection. We implemented a connection table as part of the LD_PRELOAD library

to manage all open sockets with the web server. When a chunk thread is spawned, it observes

the connection ID number in its comux chunk’s header. This ID number is used as an index

into the connection table to retrieve the connection’s status and the socket file descriptor.

There are three possible states a chunk thread may find its assigned connection in:

• The connection has not been opened yet. In this case, the chunk thread will

open a new connection and update the table’s entry.

• The connection is still active. In this case, the chunk thread simply retrieves the

existing socket file descriptor.

• The connection was closed by the server while handling a previous chunk.

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

In this case, the chunk thread exits.

This connection table enables the LD_PRELOAD library to support connection multiplexing as

defined in the comux file format.

3.4 The Gurthang AFL++ Custom Mutator

We implemented Gurthang’s comux mutator in C as a shared library based on the AFL++

custom mutator module interface [9]. The AFL++ custom mutator framework allows for

multiple function implementations to let a custom mutator tap into various stages of AFL++’s

fuzzing procedure. We implemented the Gurthang custom mutator to do the following during

an AFL++ fuzzing campaign:

• Inspect comux test cases and instruct AFL++ how many times it should be mutated and

executed against the target program.

• Mutate comux chunks using several strategies, while maintaining the integrity of the

comux file format.

• Trim the data within comux chunks in order to minimize test case size.

3.4.1 Comux Inspection

We implemented afl_custom_fuzz_count() in Gurthang’s mutator to inspect comux test

cases and tell AFL++ the exact number of times a test case should be mutated and executed

against the target web server [9]. This gives the Gurthang mutator the power to prioritize

certain comux test cases over others.

3.4. THE Gurthang AFL++ CUSTOM MUTATOR 47

We implemented this to favor comux files that have multiple connections and/or multiple

chunks. With this, the fuzzer will spend more time testing the web server against comux

test cases specifying a higher number of connections and/or chunks. We chose this with the

expectation that comux files representing multiple connections or chunks may have a higher

chance of revealing concurrency-related bugs in the target.

3.4.2 Comux Mutation Strategies

When AFL++ passes a test case to Gurthang’s mutator, the mutator parses the comux infor-

mation and randomly selects a strategy. These strategies perform a single mutation on one

of the chunks stored within the comux file.

Because each initial test case we use to seed AFL++ is in the comux file format, the Gurthang

mutator implements several mutation strategies that are unique to (and depend on) comux.

It also implements standard AFL-like bitwise/bytewise mutations on the data within each

comux chunk. These strategies are discussed below.

Strategy 1 - CHUNK_DATA_HAVOC

This strategy selects a random comux chunk within the input file and performs an AFL-

like havoc mutation on the chunk’s payload. We implemented this simply by invoking the

surgical_havoc_mutate() function provided by the AFL++ developers as a helper method

for custom mutators [13]. Gurthang’s mutator simply provides it with the chunk’s data and

instructs it to work within the data’s bounds.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

Strategy 2 - CHUNK_DATA_EXTRA

This mutation is similar to the havoc mutation strategy mentioned above. Within this, we

implemented a few extra havoc-like mutations we believed to provide interesting test cases.

They are:

• Reverse Bytes - select a random range of bytes within a comux chunk’s data and

reverse their order.

• Swap Two Bytes - select two random bytes within a comux chunk’s data and swap

their positions.

Strategy 3 - CHUNK_SCHED_BUMP

We implemented this strategy to intentionally modify the scheduling value of comux chunks.

By modifying when chunks are scheduled to be sent to the target web server, the Gurthang

LD_PRELOAD library will establish connections and/or send chunks of data to the target server

in different orders. This exact purpose motivated us to design the comux file format with

a scheduling field in each chunk. By reordering the sending order of chunks, the Gurthang

mutator may increase the chances of detecting new behavior within the target server.

To perform this mutation, the Gurthang mutator searches through the comux file for a

suitable chunk that has enough room to make a difference if its scheduling value is updated.

A suitable chunk has the following properties:

1. The chunk must have a scheduling value that, if increased or decreased, will still

maintain the same relative ordering within its own connection.

2. The chunk must, by having its scheduling value increased or decreased, be scheduled

3.4. THE Gurthang AFL++ CUSTOM MUTATOR 49

differently than it was before, with respect to its neighboring chunks for other connec-

tions.

Consider the following example of a simple comux file with two connections represented across

three chunks:
CHUNK CONN_ID SCHED

C-0 0 1

C-1 1 0

C-2 0 2

Figure 3.6: An example comux file with two connections and three chunks.

The scheduling values dictate that chunk C-1 will be sent to the web server first. Chunk C-0

will follow it, and chunk C-2 will be sent last. Both C-0 and C-2 are assigned to connection

0. Because of this, we do not want to change their relative order. Why? It is possible C-2

contains part of a payload that must arrive last along connection 0, after C-0’s payload.

Changing this order would generate a completely different test case that heavily upsets the

format of the expected input (such as sending the bottom half of an HTTP message before

the top half). Mutation-based fuzzing makes small, incremental changes to an existing test

case to produce a new one that is similar to the original. This similarity is how mutation

builds off of previous discoveries. A drastic mutation that heavily modifies an existing test

case is not likely to trigger new behavior in the target program. Instead, it would likely

trigger already-explored error paths.

In this case, the CHUNK_SCHED_BUMP cannot increase C-0’s scheduling value up to 3. It could

be increased up to 2, but this would not change the order in which the chunks are sent.

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

However, it is suitable to decrease its scheduling value down to 0:

CHUNK CONN_ID SCHED

C-0 0 0

C-1 1 0

C-2 0 2

Figure 3.7: The same example comux file as shown in Figure 3.6, with a new scheduling value
for chunk C-0.

The result of this scheduling bump means that chunk C-0 will now be sent first, followed

by C-1 and C-2. The relative ordering between C-0 and C-2, which belong to the same

connection, is still maintained. At the same time, this mutation has created additional delay

between the sending of C-0 and C-2 by establishing connection 1 and sending C-1 between

them. This may uncover more interesting target behavior.

Strategy 4 - CHUNK_SPLIT

This mutation selects a random suitable chunk and splits it into two separate chunks. We

implemented this strategy with the understanding that splitting a single chunk into multiple

chunks may open the door for more future CHUNK_SCHED_BUMP mutations, allowing payloads

to be sent to the target server at different times and in different orders. The mutator selects a

suitable chunk in the same way as described above in the CHUNK_SCHED_BUMP strategy. There

must be enough room for scheduling variance among the selected chunk’s same-connection

neighbors to split it while maintaining the same delivery order for the corresponding con-

nection.

3.4. THE Gurthang AFL++ CUSTOM MUTATOR 51

Strategy 5 - CHUNK_SPLICE

This mutation performs the opposite action of CHUNK_SPLIT. It selects two neighboring same-

connection chunks and combines them into one chunk, randomly choosing a new scheduling

value. We implemented this strategy simply to negate CHUNK_SPLIT, in order to keep test

cases from growing too large in chunk count.

Strategy 6 - CHUNK_DICT_SWAP

The Gurthang mutator supports the use of dictionaries in the form of text files. At run-

time, a user can provide one or more dictionaries through an environment variable. Each

dictionary is required to contain one word per line. This mutation strategy is enabled only if

dictionaries are given by the user. If the mutator finds a keyword within a randomly-chosen

dictionary inside a comux chunk’s payload, it will swap it out for a different, randomly-chosen

word in the same dictionary.

We implemented this with HTTP in mind, as certain inherent dictionaries exist in the pro-

tocol. Two examples are: the dictionary of strings representing HTTP request methods and

a dictionary of HTTP request header names and values (see Section 2.2.2). We implemented

this to support more structured inputs and give variety to HTTP test cases. While it allows

for new vocabulary to be placed into comux chunk payloads, it is still inferior to today’s

grammar mutators and format-aware fuzzers [2, 21, 46]. Nevertheless, we believe providing

such dictionaries can create more variety during a fuzzing campaign.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.4.3 Test Case Trimming

We implemented a series of trimming functions within the Gurthang mutator to cut down

test case sizes during fuzzing. When AFL++ (and our mutator) trims a test case, it does so

to decrease test case’s size while still ensuring the test case invokes the same behavior in the

target program [9].

We implemented test case trimming to uphold the integrity of the comux file format by

preventing AFL++ from using its built-in trimming features. AFL++’s built-in trimming is

not aware of any file format within the input files, and as such AFL++ would destroy comux

header information by cutting out random bytes across several trimming steps.

AFL++’s trimming procedure works by first choosing a number of trimming steps to perform

for one test case. Then, for each trimming step, random bytes are removed, and the trimmed

version is executed with the target program. If the same behavior was invoked, the trim-

ming step succeeded. Otherwise, the trimming step failed. Mimicking this, the Gurthang

mutator’s performs the following logic:

1. Parse the comux test case and determine the number of chunks present.

2. Choose one chunk at random (chunk C).

3. Choose a set number of bytes to remove during each step (N). N is computed propor-

tional to chunk C’s payload size.

4. Choose a set number of trimming steps to attempt (S). S is the quotient of the comux

chunk’s payload size and N.

5. For each of the S trimming steps:

(a) Remove N bytes from C’s payload.

3.5. DESIGN LIMITATIONS 53

(b) If trimming succeeded, use the new version of C for the following trim step.

(c) If trimming failed, reset C’s payload back to its previous state.

(d) If, after 100 trimming steps or 25% of the total trimming steps (whichever comes

first), there is a less than 10% success rate, give up on trimming this test case.

Our test case trimming can be summarized as: keep removing N random bytes, one step at

a time. If trimming isn’t working, quit early. By removing an amount of bytes proportional

to the selected comux chunk’s payload size, larger chunks take roughly the same number of

trimming steps as smaller chunks. Furthermore, Gurthang’s mutator observes the success

rate over time and will quit trimming if a low success rate is seen, allowing AFL++ to move

onto a new test case faster.

3.5 Design Limitations

We designed Gurthang to enable the fuzzing of web servers, and while we have observed our

design to work, some of our choices have introduced limitations.

Gurthang exercises multiple server threads concurrently by establishing multiple connections

through the LD_PRELOAD library. Multiple server threads executing concurrently all write

to the same shared memory region controlled by AFL++. While the LD_PRELOAD library’s

controller thread imposes an order on Gurthang’s threads, no such ordering exists for the

server’s threads. This in addition to the unpredictability of Linux thread scheduling may

cause some variance in recorded execution paths of the same test case. These may falsely

show up as separate unique discoveries during fuzzing. However, we have observed that this

variance does not impede AFL++.

Gurthang’s input bridge overrides a number of networking system calls to detect when a

54 CHAPTER 3. DESIGN AND IMPLEMENTATION

web server is ready to accept a new client connection. We override accept(), accept4(),

epoll_ctl(), and epoll_wait(). It is possible some web servers use other system calls,

such as select(). Our implementation of Gurthang would not be capable of fuzzing these

servers.

Chapter 4

Evaluation

4.1 Evaluation Goals

Our goals for evaluating Gurthang are as follows:

• Goal 1: Show Gurthang can easily be integrated with AFL++, a fuzzer representing

the state-of-the-art of source-code-guided fuzzing.

• Goal 2: Show Gurthang is capable of fuzzing web servers of varying implementation.

• Goal 3: Show Gurthang is capable of finding bugs in web servers.

• Goal 4: Show Gurthang is capable of finding bugs that evade detection by existing

tools.

4.2 Research Study

We made Gurthang available in the Fall 2021 semester to students enrolled in Virginia Tech’s

Computer Systems course (CS 3214) as a study for this research. We established the study

as a voluntary activity where students could utilize AFL++ (harnessed by Gurthang) to fuzz

their HTTP web servers, which they developed for their final project in the course. We

performed this study not only to measure the effectiveness of Gurthang, but also to provide

55

56 CHAPTER 4. EVALUATION

the students in CS 3214 with a hands-on example of fuzzing and a brief look into the field

of Computer Security. Our study was approved by the IRB on November 18th, 2021. The

study’s IRB protocol number is 21-874. We used AFL++ version 3.15a for the duration of the

study.

4.2.1 HTTP Server Project

We built our study onto the existing web server project in CS 3214. This project required

students to implement a variety of features on top of a simple single-threaded HTTP server

implementation. Students were provided a repository of code that implemented the following

features:

• Accepting connections through an IPv4 address

• Parsing HTTP requests

• Constructing HTTP responses

• Serving static files

Students were required to implement a number of features to improve the provided web

server. These features were:

• Accepting connections through both IPv4 and IPv6 addresses

• Handling multiple concurrent clients (implementing multi-threading)

• Servicing both HTTP/1.0 and HTTP/1.1 requests

• Preventing path traversal vulnerabilities

4.2. RESEARCH STUDY 57

• Providing user authentication support

• Providing API to retrieve a listing of accessible MP4 videos

• Streaming MP4 videos and servicing partial requests via the HTTP Range request

header

Student implementation were graded for correctness (using a suite of unit tests) and for

performance (using a suite of benchmarking tests).

4.2.2 Study Protocol

To participate, the students’ first step was to complete the project as normal. As they

developed their web servers, they used a series of unit tests to evaluate the implemented

functionality of their program. We will discuss these unit tests in Section 4.2.4.

Before further participation, we recommended that students first passed all unit tests to

ensure they had a robust web server. (However, the decision was ultimately up to the stu-

dent.) When ready, participating students would run the fuzzer and consent to having their

results and source code collected for research. We acquired informed consent electronically.

Students could freely choose to opt out and have any previously collected data deleted.

Consent and interaction with the fuzzer (AFL++ and Gurthang) was done by the participants

through a Python script installed on the Computer Science department computing nodes

upon which their coursework was done. These 32 computing nodes run CentOS 8 on the

following hardware:

• Machine: Dell R640 1U server

• Processors: 2x Intel Xeon Gold 5218 2.3GHz 16-core processors

58 CHAPTER 4. EVALUATION

• Memory: 384 GB @ 2933 MT/s

• Disk: 1 TB hard drive

• Ethernet: 10 Gigabit interconnect

Figure 4.1: The introduction screen displayed by the Python script to the participants.

Upon consenting, the Python script spawned four parallel AFL++ instances and ran the fuzzer

against the participant’s web server. The fuzzer ran until one of the following scenarios

occurred:

• The fuzzer discovered a bug in the participant’s code.

• The fuzzer reached an imposed time limit: 1 hour and 30 minutes.

• The participant chose to stop the fuzzer’s execution.

4.2. RESEARCH STUDY 59

Once the fuzzer exited, our infrastructure reported any discovered crashes to the participant.

It also provided students with scripts to assist them with debugging these crashes.

Figure 4.2: An example of a crash report displayed by the Python script to the participants
after fuzzing concludes.

From here, if they chose, the participant would spend time analyzing the reported crashes

and debugging their server with the provided information and scripts. Participants could

freely repeat this procedure (fuzzing, then debugging) as many times as they desired.

After each fuzzing campaign, if the participant had consented, our infrastructure sent a copy

of their web server source code and fuzzing results to a secure location on the VT Computer

Science department computing nodes. Upon granting consent, each participant was assigned

a randomly-generated ID string stored within a file in their repository. These participant IDs

were used by our infrastructure to associate a participant with his/her submissions. Each

60 CHAPTER 4. EVALUATION

ID was generated randomly and was used to provide anonymity. If a participant chose to

repeat the study protocol multiple times, our infrastructure collected multiple versions of

their source code and fuzzing results under the same anonymous participant ID. We analyzed

this data after the conclusion of the Fall 2021 semester.

4.2.3 Study Participation

At the time of the study, 236 students were enrolled in CS 3214. Upon examination of the

collected data, we observed 79 different anonymous participants that had made submissions.

However, we did not receive 79 distinct web servers (i.e. one from each participant). CS 3214

students are required to work in pairs on the course projects. We did not take these project

partners into consideration, which meant two partners developing the same web server could

both individually participate in the study. This resulted in similar or identical copies of the

same web server being listed under two separate anonymous participant IDs.

We spent time determining which of the anonymous participants had submitted the same

server, in order to better quantify the discoveries discussed below. To do this, we utilized the

diff and diffstat Linux utilities to compare each participant’s submitted source code with

all other participants’ source code [26]. For each anonymous participant, we averaged the

scores reported by diffstat (the summation of total differences) when comparing with all

other participants. Then, any other participant whose code produced a diffstat score less

than half of the average was flagged as a potential match. We automated this by creating a

shell script. Then, we manually examined each flagged pair of participants to determine if

their source code came from the same web server.

We found 12 cases of one distinct web server being submitted under multiple participant

IDs. This is depicted in figure 4.3.

4.2. RESEARCH STUDY 61

Number of Distinct Servers Number of Times Submitted (under separate participant IDs)
43 1
6 2
4 3
1 5
1 7

Total: 55

Figure 4.3: Occurrences of distinct servers submitted under separate participant IDs.

From this analysis we determined 55 distinct web servers were submitted across the 79

anonymous participants. We focus on these 55 distinct servers for the remainder of this

chapter.

4.2.4 Unit Testing Prior to Participation

As part of the web server project in CS 3214, a series of unit tests are used to grade the

functionality implemented by students. These unit tests have been a part of CS 3214 for

several semesters (since their creation in the Spring 2018 semester) and have been refined

by the teaching staff over time. Some of these tests are denoted as “robustness” tests, and

are designed to test the server’s ability to handle a number of unexpected inputs. Some

examples include:

• Very long HTTP request URIs

• Unexpected Cookie header values

• Malformed HTTP request message bodies

These unit tests have been successful at uncovering common issues with students’ imple-

mentations across several semesters since their creation in the Spring 2018 semester, and are

62 CHAPTER 4. EVALUATION

agreed to exercise all major functionality implemented by the students, save for one recent

addition to the requirements: the ability to stream MP4 videos. This new functionality,

however, was required for a separate assignment within the course, and thus many partici-

pants submitted code that lacked the new features. In April of the Spring 2022 semester we

improved the unit test suite to exercise the new MP4 streaming features.

Unit Test Coverage

Despite a general agreement of the unit tests’ capabilities, we spent time evaluating them

to determine how much of students’ implemented features were actually tested, and by

extension, how much room was left for fuzzing to find additional behavior. We did this

through code coverage measurements.

In order to measure the coverage of the existing unit tests, we utilized gcov, a utility for the

GNU C Compiler (GCC) [49]. As discussed in Section 2.1.3, a program’s flow of execution can

be represented by a graph of basic blocks, linked together by conditional branch instructions.

gcov is capable of instrumenting a program then measuring the number of basic blocks

executed to form a coverage percentage for each compiled C source file. This percentage

quantifies exactly how much of the total program behavior was exercised during testing.

Four main C source files are shared by all 55 distinct web servers: http.c, main.c, socket.c,

and bufio.c. These files originate from the initial code provided to the students at the start

of the project. They are also the source files into which most of the students’ implementations

are written. Because of this, we measured the code coverage percentage for each one across

all 55 web servers to quantify the unit tests’ coverage.

To measure the coverage for each source file, we compiled every submitted web server with

gcov’s compiler flags (-fprofile-arcs and -ftest-coverage) and linker flag (-lgcov) to

4.2. RESEARCH STUDY 63

create instrumented binaries. Following this, we ran the unit tests against the instrumented

web server, after which gcov’s output was produced and parsed. With the output, we

computed average coverage percentages for each source file, for every distinct web server.

We combined these averages to form one overall average. These steps are listed below.

1. For each web server:

(a) For each submission of this web server:

i. Compile the web server with gcov instrumentation.

ii. Run all unit tests against the web server.

iii. Record coverage percentages for http.c, main.c, socket.c, and bufio.c.

(b) Compute and record the average coverage percentages for http.c, main.c,

socket.c, and bufio.c across all submissions of this web server.

2. Compute the overall average coverage percentage for http.c, main.c, socket.c, and

bufio.c across all web servers.

We calculated the overall averages displayed in Figure 4.4.

C Source File Percentage of Basic Blocks covered by Unit Tests

http.c 74.67%

main.c 70.34%

socket.c 66.39%

bufio.c 78.40%

Figure 4.4: Overall average percentages of the unit tests’ basic block coverage among all
study participants.

64 CHAPTER 4. EVALUATION

As a whole, this shows that the unit tests exercise the majority of the students’ implemented

behavior in the four main C source files. http.c is of special interest, as it typically contained

most of the features implemented by students throughout the course of the project. Each of

the four source files have over half of their code covered, with three being close to 75%. The

coverage fell short of 100% for multiple reasons:

• As we mention in Section 4.2.4, a subset of the functionality - MP4 video streaming -

is a recent addition. No unit tests had been written yet to cover this at the time of the

study, even though some participants submitted web servers with these new features.

As such, some basic blocks not reported by gcov belong to this functionality.

• The provided base code performs lots of error checking. This is especially evident in

socket.c, where several network programming system calls are made to set up the

server’s communication sockets. Error checks exist for all of these invoked system

calls and thus make up a considerable portion of the source file’s basic blocks. Error

checking is good programming practice, but it is very rare that such system calls will

fail. The unit tests do not exercise these error checks because of how trivial they

are. Code implemented by students also contains similar error checks in many cases.

Because these error checks are not likely to occur unless in extreme cases, the unit

tests do not exercise them.

Bearing these considerations combined with the coverage measurements in mind, we have

shown the existing CS 3214 unit tests are effective, but not perfect. It is very difficult to

design a set of unit tests sufficient for testing every possible case of malicious input. Unit

testing and fuzzing both seek to exercise a large coverage of the target source code, but they

exist on a spectrum. On one end of the spectrum there is too little testing. This might

involve one or two trivial test cases that exercise very little of the target program’s behavior.

4.2. RESEARCH STUDY 65

On the other end of the spectrum is the idea of turning every new test case generated by the

fuzzer into a unit test. While this second option certainly exercises the most coverage of the

target program, it is not practical. Bearing these thoughts in mind, we hypothesized that

while the existing CS 3214 unit tests do well to test the major functionality of a student’s

web server (plus a number of malicious-input cases), fuzzing may be able to uncover new,

untested behavior.

Unit Test Results Among Participants

We highly recommended that students who wished to participate in the fuzzing study should

first ensure their server passed all unit tests, with an emphasis on the robustness tests

mentioned above. 45 of the 55 distinct web servers passed all unit tests in at least one

submitted version of their code. As such, these 45 servers ensured their web servers exhibited

a baseline ability to handle both expected and unexpected inputs gracefully. We categorized

these servers as robust. The remaining 10 web servers failed at least one functionality unit

test and one robustness unit test in all submitted versions of their code. We categorized

these servers as not robust. These statistics are illustrated in Figure 4.5. Despite many of

the servers possessing this baseline robustness, we still observed several bug discoveries by

Gurthang.

In Section 4.2.5, we discuss the bugs originating from the 55 distinct web servers submitted

throughout the course of the study. In Section 4.2.6, we walk through the details of a number

of selected bugs that were discovered in these servers.

66 CHAPTER 4. EVALUATION

Figure 4.5: A summary of the 55 distinct web servers submitted throughout the CS 3214
study. This depicts unit test scores, discovered bugs, and servers that were submitted mul-
tiple times as the participant fixed bugs.

Figure 4.6: The three bug categories determined by examining the 48 discovered bugs.

4.2. RESEARCH STUDY 67

4.2.5 Assessment of Gurthang’s Use By Participants

While every web server originated from the same set of starter code provided as part of

CS 3214, each student was required to implement functionality that parsed HTTP requests,

formed HTTP responses, parsed HTTP Cookie headers, dissected JSON strings, and more.

We hypothesized that the implementation of these features opened the door for bug discovery

by the fuzzer.

Our results show that Gurthang was successful at discovering bugs. Of the 55 distinct web

servers, Gurthang discovered bugs in 29 of them. 4 of the 29 buggy servers fell into the

non-robust category (meaning 4 of the buggy servers failed at least one functionality unit

test and one robustness unit test). However, the bugs discovered on these 4 non-robust

servers were of the same caliber as the 25 robust servers. Because of this, we have combined

the two groups’ bug discoveries into one discussion. In total, we found 48 bugs across the 55

web servers. We grouped the discovered bugs into three major categories: failure to check

return values, out-of-bounds memory writes, and out-of-bounds memory reads.

This is depicted in Figure 4.6.

Failure to Check Return Values

The vast majority of bugs we discovered were the result of the programmer’s failure to

check the return value of various C functions. 36 of the 48 discovered bugs fell into this cate-

gory. Many of these functions dealt with parsing strings: strtok_r(), strtok(), strstr(),

strchr(), opendir() were all involved, as well as functions in Jansson, a C library deal-

ing with JSON object management [24]. These return values were NULL and were passed,

unchecked, into other similar functions, including some defined within libjwt, another C

library that provides an API for encoding and decoding JSON Web Tokens for the authen-

68 CHAPTER 4. EVALUATION

Figure 4.8: Source functions from which NULL return values originated. Some of these func-
tions (json_unpack() and json_string_value()) originate from open-source libraries [24].

tication portion of the project [6]. These return values were also manually dereferenced in

some cases. In all cases, the program crashed with a segmentation fault (SIGSEGV). Examples

of these bugs are depicted in Figure 4.7.

// ---------- BUG EXAMPLE 1 ---------- //
char* ptr = parsing_function(); // returns NULL
strcmp(ptr, "/something"); // NULL parameter triggers a SIGSEGV.

// ---------- BUG EXAMPLE 2 ---------- //
char* ptr = parsing_function(); // returns NULL
char c = *ptr; // NULL dereference triggers a SIGSEGV.

Figure 4.7: C code depicting bugs originating from the failure to check a return value.

We depict a detailed breakdown of the source functions from which the NULL return values

originated in Figure 4.8.

4.2. RESEARCH STUDY 69

Out-of-Bounds Memory Writes

The second-largest category of our discovered bugs involved invalid memory writes that

modified bytes outside the expected range of a buffer. 8 of the 48 discovered bugs fell into

this category.

2 of these out-of-bounds writes were caused by buffer overflows, a common software bug

involving an attempt to write to memory past the end of a buffer [16]. One of the buffer

overflows occurred when 6400 bytes were written into a buffer of a hard-coded size of 1024.

Thousands of bytes past the end of the buffer were modified, eventually resulting in an

illegal access and segmentation fault. The other buffer overflow was caused by an incorrect

Content-Length header in an HTTP request sent during fuzzing. A heap-allocated buffer

of insufficient size had excess bytes written to it, causing the clobbering of the libc memory

allocator’s boundary tags. A brief depiction of this type of bug is shown in Figure 4.9.

// ---------- BUG EXAMPLE 1 ---------- //
char buffer[1024];
for (int i = 0; i < parsed_length; i++) // 'parsed_length' is 6400
{ buffer[i] = some_value; }
// This loop blindly iterates 'parsed_length' times, which
// in this case is much larger than the hard-coded buffer
// length of 1024.

Figure 4.9: C code depicting a buffer overflow bug.

The remaining 6 out-of-bounds writes were caused by buffer underflows, a similar bug

involving an attempt to write to memory located before the beginning of a buffer. All 6 of

these bugs were caused by the server parsing and using a negative Content-Length HTTP

header value (the server failed to sanitize the input from the client). Stack-local buffers were

initialized with these negative lengths, causing an underwrite (followed by a segmentation

70 CHAPTER 4. EVALUATION

fault) once the buffer was written to. A brief depiction of this bug is shown in Figure 4.10.

// ---------- BUG EXAMPLE 2 ---------- //
char buffer[length]; // 'length' is negative
snprintf(buffer, length, "SOME_STRING");
// Memory was written to *before* the beginning of 'buffer',
// overwriting something else nearby on the stack.

Figure 4.10: C code depicting a buffer underflow bug.

Out-of-Bounds Memory Reads

Our smallest bug category consisted of out-of-bounds memory reads. 4 of the 48 bugs were

caused by the programmer’s failure to protect against reading memory outside the bounds

of a buffer.

2 of the 4 bugs discovered involved a loop that read memory byte-by-byte until a specific

value was found. The fuzzer discovered these bugs by sending an HTTP message that did

not contain the expected value, causing the loop to read thousands of bytes past the end of

a buffer, triggering a segmentation fault (SIGSEGV). An example of this is shown in Figure

4.11.

// ---------- BUG EXAMPLE 1 ---------- //
char* data = parsing_function(); // returns "STRING NOT CONTAINING DESIRED BYTE"
while (*data != '=')
{ data++; }

Figure 4.11: C code depicting an out-of-bounds memory read bug, via an infinite loop.

The remaining 2 bugs originated from the failure to check a buffer’s true length, and the

assumption its length exceeded some minimum. Attempting to read past the end of the

buffer triggered a segmentation fault (SIGSEGV). An example of this is shown in Figure 4.12.

4.2. RESEARCH STUDY 71

// ---------- BUG EXAMPLE 2 ---------- //
size_t length = parse_length(); // length is parsed as 1 byte
char* buffer = malloc(length); // one byte is allocated
strncpy(dest, buffer, 20); // assumes length is 20+ bytes

Figure 4.12: C code depicting an out-of-bounds memory read bug, triggered by an assump-
tion of a buffer’s length.

4.2.6 Examples of Bugs Discovered by Gurthang

In this section, we review the details of a number of bugs discovered by Gurthang in student

web servers submitted as part of the study. Each of the crash-inducing test cases were

generated by Gurthang’s custom mutator, which allowed AFL++ to discover the crash. After

this, the Python scripts discussed in Section 4.2.2 alerted the participant of the crash that

was discovered and provided a shell script to easily debug the crash (shown in Figure 4.1).

We walk through the debugging process a student of CS 3214 might take to discover the root

cause of each of these bugs. The act of debugging is made easier with the provided Python

and shell scripts, but it is still largely the participant’s responsibility to use their debugging

skills to uncover the root cause of each bug. Gurthang contributes the discovery of the bug

to the participant.

Bug 1 - Failure to Check Return Value - NULL Pointer

The first bug falls into the first major bug category discussed in Section 4.2.5: failure

to check return values. In particular, this bug originates from the participant’s failure

to check for a NULL return value from an unintended call to strtok_r() while parsing a

malformed HTTP Cookie header.

To begin debugging, the participant first examines the contents of the crash-inducing comux

72 CHAPTER 4. EVALUATION

file with the provided comux toolkit program. Using this, the participant sees that a single

connection is represented within the file across a single comux chunk. Inside the chunk is an

HTTP GET request targeting /private/secure.html. A Cookie header is specified, but it

is malformed; extra white-space surrounds the equals sign ("=") in the second cookie. This

is shown in Figure 4.13.

Figure 4.13: Example Bug 1 - The comux input file generated by Gurthang. Gurthang
mutated the second field within the Cookie header to contain extraneous white-space sur-
rounding the equals sign ("=").

Using the provided scripts, the participant re-runs the server (using Gurthang’s LD_PRELOAD

library) with the crash-inducing comux file. Doing this confirms that a segmentation fault

is delivered to the web server after it processes the input file, causing the crash. This is

depicted in Figure 4.14.

4.2. RESEARCH STUDY 73

Figure 4.14: Example Bug 1 - The target web server crashes when given the input file.

Next, the participant launches the GNU Debugger to investigate further [10]. It is from

here the developer must spend time debugging with his/her existing skills. To be thorough,

we describe one possible set of steps a participant might take to debug Gurthang’s crash-

inducing input file below.

The participant first runs the program and examines the stacktrace upon delivery of the

SIGSEGV signal. The crash occurred within the web server’s routine for handling requests to

the authentication-protected directory, /private. More specifically, at line 724 in http.c.

This is shown in Figure 4.15.

74 CHAPTER 4. EVALUATION

Figure 4.15: Example Bug 1 - The web server’s post mortem stacktrace (GDB).

The participant then sets an appropriate breakpoint and discovers a NULL return value from

the strtok_r() function that is passed into a call to strcmp() unchecked. This discovery

is depicted in figure 4.16. The failure to check strtok_r()’s return value is the root cause

4.2. RESEARCH STUDY 75

of this bug.

Figure 4.16: Example Bug 1 - Examining the NULL pointer returned from a call to
strtok_r().

Bug 2 - Out-of-Bounds Write - Buffer Underflow

The second bug forces the target web server to overwrite an important stack-local value and

cause a segmentation fault. It falls under the second major bug category: out-of-bounds

writes. With the provided comux toolkit, the participant may first view the contents of

the crash-inducing comux file. Doing this shows that the comux file represents a single

connection across a single comux chunk. The chunk contains a simple HTTP POST request to

the /api/login endpoint, supplying a JSON request body with login credentials. Gurthang

mutated this file to have a negative value for the HTTP Content-Length header. This is

depicted in Figure 4.17.

76 CHAPTER 4. EVALUATION

Figure 4.17: Example Bug 2 - The comux input file generated by Gurthang.

Using the provided scripts, the participant re-runs the server with the comux file to confirm

the crash. This action is shown in Figure 4.18.

Figure 4.18: Example Bug 2 - The target web server crashes when given the input file.

After confirming the crash, the participant launches the GNU Debugger to investigate [10].

The stacktrace at the time of the segmentation fault shows the crash occurred within a call

to libc’s realloc() function when it was given an inaccessible memory address. This is

shown in Figure 4.19.

4.2. RESEARCH STUDY 77

Figure 4.19: Example Bug 2 - The web server’s postmortem stacktrace (GDB).

The participant may next place an appropriate breakpoint and spend time debugging further.

This reveals that the server failed to sanitize the Content-Length header and stored the

negative value (-47) as-is. This is shown in Figure 4.20.

78 CHAPTER 4. EVALUATION

Figure 4.20: Example Bug 2 - Viewing the parsed Content-Length header as -47 (GDB).

Through further debugging, the participant discovers the negative Content-Length (-47)

is used to initialize a stack-local buffer. In a subsequent call to snprintf(), the pointer

later passed into realloc() is overwritten due to the buffer underwrite that occurs. This

is shown in Figure 4.21. The root cause of this bug was the participant’s failure to sanitize

the client’s negative Content-Length header.

Figure 4.21: Example Bug 2 - Witnessing a stack-local variable be overwritten in an out-of-
bounds write (GDB).

4.2. RESEARCH STUDY 79

Bug 3 - Out-of-Bounds Read - Infinite Loop

The final bug forces the target web server to infinitely read memory until encountering a

forbidden address, causing a segmentation fault. As such, it falls under the third major bug

category: out-of-bounds reads. The participant may first examine the contents of the

crash-inducing comux file with the provided comux toolkit. This comux represents a single

connection across a single chunk (shown in Figure 4.22). The chunk contains a HTTP GET

request for /private/secure.html. Gurthang mutated the second field within the Cookie

header to replace the equals sign ("=") with the letter "d".

Figure 4.22: Example Bug 3 - The comux input file generated by Gurthang.

The participant utilizes the provided scripts to re-run the server with the comux file to

confirm the segmentation fault. This is shown in Figure 4.23.

Figure 4.23: Example Bug 3 - The target web server crashing when given the input file.

80 CHAPTER 4. EVALUATION

Next, the participant launches the GNU Debugger to investigate further [10]. The stacktrace

at the time of the crash shows the server failed whilst processing the HTTP request headers.

This is shown in Figure 4.24.

Figure 4.24: Example Bug 3 - The web server’s postmortem stacktrace (GDB).

The participant may then place an appropriate breakpoint and debug further. This reveals

that the Cookie header parsing code is the point of failure. The participant’s code uses an

infinite while loop to search for an equals sign ("=") within the Cookie header’s contents.

The root cause of the bug is the participant’s failure to consider the case where no equals

4.2. RESEARCH STUDY 81

sign is present in a malformed Cookie header. This is shown in Figure 4.25.

Figure 4.25: Example Bug 3 - The faulty source code causes an invalid read far from the
original location.

At the time of the crash, this infinite loop walked 132,000 bytes away from its original

location. This triggers a segmentation fault.

4.2.7 Participant Bug Fixes over Multiple Fuzzing Campaigns

Many of the study participants chose to submit multiple versions of their web servers across

multiple fuzzing attempts. With these multiple submissions, we observed how some students

82 CHAPTER 4. EVALUATION

Figure 4.26: A histogram of the number of submissions made across the 55 web servers.

improved their web servers between their fuzzing campaigns.

As shown in Figure 4.26, we observed that the majority of participants only made one or two

submissions (corresponding to one or two fuzzing campaigns). Across the 55 distinct web

servers, 31 of them were submitted multiple times. 23 of these 31 multi-submitted servers

contained bugs found by the fuzzer, and of these, we found that some showcased different

or no bugs in subsequent fuzzing runs. We analyzed these servers to understand how each

participant used Gurthang’s output to improve their server over time.

Among these 23 buggy & multi-submitted servers, we observed 12 that had all previous bugs

fixed at the time of their final submission. By examining the source code of these 12 servers

across the multiple submissions, we found changes each participant made to fix bugs found

in previous fuzzing runs. These observations are proof that some participants that chose

to perform multiple fuzzing campaigns spent time debugging and fixing each bug presented

to them by the fuzzer, thus making their server more robust in the process. This shows

4.2. RESEARCH STUDY 83

Gurthang can be easily integrated into the development workflow of developers with little or

no experience with fuzzing. We discuss an example from one of the submitted servers below.

Example - Fixing Bugs Over Time

In one particular case, one of these 55 servers exhibited a failure to check return value

bug. This bug originated from the program attempting to parse a Cookie HTTP request

header that Gurthang mutated to be syntactically incorrect. Figure 4.27 shows the HTTP

request message enclosed in the crash-inducing comux file.

Figure 4.27: Bug Fix Example - The crash-inducing comux file contains a malformed Cookie
HTTP header.

GDB confirmed a crash on line 250 in http.c when given the comux file shown in Figure

4.28 as input.

84 CHAPTER 4. EVALUATION

Figure 4.28: Bug Fix Example - Running the web server through GDB shows the location
of the crash.

Examining the source code (shown in Figure 4.29) shows the root cause: the participant

failed to check the return value from strtok_r().

4.2. RESEARCH STUDY 85

Figure 4.29: Bug Fix Example - The source code reveals the bug: the failure to check for a
NULL return value from strtok_r().

This server was fuzzed 8 times. Newer versions of the server did not exhibit the same crash

when provided with the original comux file. (Shown in Figure 4.30.)

86 CHAPTER 4. EVALUATION

Figure 4.30: Bug Fix Example - Running the same input file with a newer version of the
same web server shows it no longer crashes.

Examining the same area of source code in the newer submission (http.c line 250), shows

the participant added an if-statement to check against a NULL return value, thus fixing the

bug. (Shown in figure 4.31.)

4.3. SURVEY RESULTS 87

Figure 4.31: Bug Fix Example - The newer submission’s source code shows the participant
added a return value check to fix the bug.

This example (and others we observed) showcases Gurthang’s ease-of-use, considering these

students had little (or no) experience in writing HTTP web servers and fuzzing programs.

Despite this inexperience, students were easily able to integrate fuzzing into their software

development process to make their code more robust.

4.3 Survey Results

In addition to collecting and analyzing participants’ source code and fuzzer output, we invited

students to fill out an anonymous Qualtrics survey to provide feedback on the fuzzing tools’

effectiveness. The survey was opened after IRB approval was granted, and the research

study was made public to the students in CS 3214. 16 students responded to the survey. We

list the questions that made up the survey below, with a count listed next to each possible

response, indicating the responses that were collected.

88 CHAPTER 4. EVALUATION

1. On a scale of 1-5, how much would you say you knew about fuzzing before

using this tool?

• One...[12|############]

• Two...[3|###]

• Three...[0|]

• Four..[1|#]

• Five..[0|]

2. On a scale of 1-5, how much would you say you know about fuzzing NOW,

after using this tool?

• One...[0|]

• Two...[3|###]

• Three...[10|##########]

• Four..[3|###]

• Five..[0|]

3. Do you think this tool helped you achieve better results on project 4?

• The tool helped significantly.................[3|###]

• The tool helped slightly......................[9|#########]

• The tool didn't help at all...................[4|####]

• The tool was counterproductive................[0|]

4. Overall, how useful did you find the tool to be?

• Very useful...................................[10|##########]

4.3. SURVEY RESULTS 89

• Slightly useful...............................[4|####]

• Not useful at all.............................[2|##]

• Counterproductive.............................[0|]

5. Do you believe this tool reported any inaccuracies?

• Yes...[1|#]

• No..[15|###############]

6. Is there anything else you would like to share about the tool?

• Yes...[8|########]

• No..[8|########]

Our final question prompted participants to provide open-ended feedback about anything

regarding Gurthang and its usage in CS 3214. 8 of the 16 respondents left comments. They

are listed below.

• Good work!

• Great UI, and output to showcase how we can recreate the bug in GDB.

• I think it should be integrated into the grading tool so it’s easier to use.

• It has a great UI, and it was easy to use without having to specify or configure a bunch

of other things.

• It was super nice to get extra credit and seeing no bugs was a nice way of confirming

that our server was operating at a strong level.

• Loved the documentation and how easy it was to use. Great UX.

90 CHAPTER 4. EVALUATION

• Really cool project Connor!

• The only reason I said the fuzzer was not helpful was that we only ran it after we passed

all of the other tests, so it ran successfully the first time and reported zero crashes. I’m

sure that if we had run it earlier in development it would have been helpful in finding

bugs.

We made an extra credit opportunity available to every student in CS 3214, regardless of

participation in the research study. To avoid bias, we offered this extra credit to participating

and non-participating students. We were advised by the IRB to leave the extra credit

opportunity out of the official research protocol.

Despite the relatively small number of responses, the survey shows largely positive feedback

on Gurthang and its effectiveness in finding bugs in the students’ code. The first two

questions show that participants believed their knowledge of fuzzing was increased after

using Gurthang to fuzz their web server. The majority of respondents also claimed the tool

helped them achieve better results, if only slightly, on their projects. Finally, the majority

also claimed the tool to be “very useful,” and did not report any inaccuracies.

It is through these survey responses that we can conclude an overall positive effect and an

achievement of one of our goals in conducting this study in CS 3214: providing students with

a hands-on example of fuzzing and introducing them to a new field in Computer Security.

4.4 Fuzzing Real-World Web Servers

While we largely focused our evaluation on Fall 2021 CS 3214 research study, we also spent

time fuzzing two industry standard open-source web servers to evaluate Gurthang further:

Apache and Nginx.

4.4. FUZZING REAL-WORLD WEB SERVERS 91

We performed this evaluation on a standalone Linux machine running Ubuntu version 18

with the following hardware specifications:

• Machine: Dell Optiplex 7010

• Processors: 4x Intel Core i5-3475S 2.90GHz 4-core processors

• Memory: 8 GB RAM

• Disk: 1 TB hard drive

• Ethernet: 1 Gigabit interconnect

4.4.1 Fuzzing Apache

The Apache HTTP server project is the most widely-used HTTP server in the world [14].

As such, we selected Apache as our first real-world target.

Configuring Apache

To evaluate Gurthang’s ability to fuzz Apache, we downloaded version 2.4.51 of its source

code to our system and configured it with the following settings:

• We pointed the CC and CXX environment variables at AFL++’s afl-clang-fast com-

piler.

• We force-added debugging symbols to the compilation stage by adding -g to the

CFLAGS, EXTRA_CFLAGS, and CPPFLAGS build variables. We added this to enable easier

debugging in the event Gurthang discovered a crashing test case.

92 CHAPTER 4. EVALUATION

• We installed Apache to a local directory using the --prefix configure setting. This

was done to avoid the need for root permission on our Linux system.

• We enabled the --with-included-apr, --enable-static-support,

--enable-mods-static=few, --disable-pie, --enable-debugger-mode, and

--with-mpm=worker settings to reduce number of modules enabled in Apache, enable

debugging mode for easier fuzzing, and specify our desired threading model.

During the invocation to make to build Apache, we set the AFL_LLVM_LAF_ALL environment

variable to enable the AFL++ compiler to split up comparison operations into multiple smaller

ones, making path discovery easier for the fuzzer [9, 22].

We selected a threading model that spawned four concurrent worker threads under a single

process. This choice enables Gurthang to exercise multiple connections, handled across

Apache’s multiple worker threads. Apache has a number of static modules (shared libraries)

that add various features (such as authentication or caching) to the web server. These are

linked with Apache at compile-time. We chose to use few static modules in order to focus on

fuzzing Apache’s core static-file-serving functionality. While this is a heavily tried-and-tested

portion of Apache’s features, we believed it served as a reliable starting point.

We configured Apache to bind to an unprivileged port number and listen on a local IP

address. We also configured the server to run on a single process that spawned four separate

worker threads.

Fuzzing Setup

We used the same set of input files for the CS 3214 study to fuzz Apache. While these

files originally contained raw HTTP request messages, we converted them into comux files

to be compatible with Gurthang. In addition to this, we created a root directory containing

4.4. FUZZING REAL-WORLD WEB SERVERS 93

several sub-directories and files of varying types to make the discovery of different static file

types easier for Gurthang. The varying file types consisted of plain text documents (.txt),

HTML files (.html), PDFs (.pdf), images (.png), icon files (.ico), MP4 videos (.mp4),

comma-separated files (.csv), Cascading Style Sheets (.css), and JSON files (.json). We

gave each sub-directory and file a very short file name (or a common name) to make it easy

for the fuzzer to request new files in HTTP GET requests, potentially invoking new execution

behavior in Apache. Examples of these file names include: a, b, 0, 1, _, a.html, public/,

private/, and index.html.

We also created three dictionaries containing HTTP header names, header values, and re-

quest methods, to enable Gurthang’s dictionary-swap mutation using HTTP keywords.

Fuzzing Results

When running the fuzzer in a few short trial runs, we observed that Gurthang was capable

of fuzzing Apache without modifying a single line of its source code. Initially, the fuzzer

achieved around 65 executions per second. We suspected AFL++ could be sped up by using

its deferred initialization to delay the creation of AFL++’s internal fork server until after

Apache’s initialization was complete [13]. Deploying this increased AFL++’s execution speed

eightfold, up to 500-600 executions per second.

In this improved state, we ran AFL++ for 21 CPU-days. No bugs were discovered. However,

Gurthang successfully enabled AFL++ to discover many new execution paths in Apache. The

initial set of input files we provided to AFL++ yielded 516 initial unique execution paths within

Apache. Throughout the 21-day fuzzing campaign, the fuzzer discovered 2491 additional

unique paths.

94 CHAPTER 4. EVALUATION

4.4.2 Fuzzing Nginx

Like Apache, Nginx is an extensive, open-source HTTP server that supports similar features

and multi-threading through the use of thread pools. [48]. We chose Nginx as the second

real-world target.

Configuring Nginx

We followed a similar process to configure and build Nginx as we did with Apache. We

downloaded Nginx’s source code (version 1.21.6) to our system, then configured with the

following settings:

• We installed Nginx to a non-privileged directory using the --prefix and --sbin-path

options.

• We downloaded the source code for PCRE (one of Nginx’s dependencies) and pointed

its location to the --with-pcre setting.

• We downloaded the Zlib source code (another dependency) and pointed its location to

the --with-zlib setting. (We later discovered this to be unnecessary, as PCRE and

Zlib could instead be disabled.)

• We enabled the Nginx debug log via the --with-debug setting.

• We ensured the inclusion of debug symbols during compilation by adding the -g flag

using the --with-cc-opt setting.

• We enabled Nginx’s threadpool by enabling the --with-threads setting.

4.4. FUZZING REAL-WORLD WEB SERVERS 95

We chose the above settings from the same motivations that drove our decisions while fuzzing

Apache: to make debugging any crashing test cases easier and enable the fuzzing of multiple

connections.

We enabled only a small number of modules, just as we did with Apache, to focus on fuzzing

Nginx’s core static-file-serving functionality. The following module settings were used:

• --with-http_v2_module enabled support for HTTP/2.

• --with-http_realip_module enabled the changing of the client address to be the

address sent in an HTTP request’s header field.

• --with-http_mp4_module enabled streaming support for MP4 files.

• --with-http_auth_request_module enabled client authentication requests.

• --with-http_slice_module enabled the splitting and caching of HTTP request mes-

sages.

• --with-http_stub_status_module enabled support for requests asking for server sta-

tus information.

As done with Apache, we pointed the CC environment variable at AFL++’s afl-clang-fast

compiler and enabled the AFL_LLVM_LAF_ALL environment variable [9, 22]. Additionally, we

configured Nginx run as a standard Linux process (i.e. not a daemon) that spawned eight

worker threads and listened for connections on an unprivileged port number.

Fuzzing Setup

We used the exact same fuzzing setup Nginx as described in Section 4.4.1 for Apache. We

created the same fuzzing-friendly root directory for Nginx to serve files from, and we used

96 CHAPTER 4. EVALUATION

the same input corpus of comux files as the initial seed for AFL++.

Fuzzing Results

Just as observed with Apache, Gurthang allowed AFL++ to fuzz Nginx without any modifi-

cation of Nginx’s source code. Initially, AFL++ achieved around 200 executions per second.

We increased this speed up to 500 executions per second by deploying AFL++’s deferred ini-

tialization [13]. We fuzzed Nginx for 21 CPU-days. No bugs were discovered. However, we

observed that Gurthang enabled AFL++ to discover several unique execution paths through-

out the 21-day campaign. The initial input corpus provided AFL++ with 516 initial unique

paths (just like Apache). Throughout the campaign, Gurthang enabled AFL++ to discover

1489 additional unique execution paths.

4.5 Evaluation Results

In this section we review the evaluation goals established in Section 4.1 to discuss the lengths

at which they have been met.

Goal 1 - Easy Integration with State-of-the-Art Fuzzers

We built Gurthang’s custom mutator as an AFL++ custom mutator. Because of this, Gurthang

can be easily integrated into AFL++. We have shown this by harnessing AFL++ with Gurthang

to fuzz a large number of distinct web servers.

Additionally, our combination of the comux file format with Gurthang’s LD_PRELOAD library

enables web servers to accept input through network connections managed by the input

bridge. We were successful in fuzzing all of the web servers used in our evaluation with no

4.5. EVALUATION RESULTS 97

source code modification required.

Goal 2 - Ability to Fuzz a Variety of Web Servers

We believe Gurthang is very effective at fuzzing a variety of web servers in two primary

ways:

Zero source code modification is required. We designed and implemented Gurthang’s

input bridge to forward the contents of the standard input stream to a web server through

a network connection without modifying a single line of the server’s source code. In our

evaluation, we showed this by fuzzing 55 distinct web servers from our research study, as well

as Apache and Nginx, without modifying any source code. Given the varying implementation

of the CS 3214 web servers and the complexity of Apache and Nginx, we conclude Gurthang

to be a success on this front.

Gurthang can fuzz a variety of web server implementations. During our Fall 2021

CS 3214 study, students implementing their web servers chose a variety of multi-threading

models. Different multi-threading models required the use of different system calls (such

as accept(), select(), or epoll_wait()) to await new client connections. We adapted

our implementation of Gurthang to handle all unique approaches, allowing us to fuzz all 55

web servers. Apache and Nginx took some initial configuration to use the desired threading

models, but Gurthang fuzzed and exercised multiple connections for both of them without

any additional change.

Students in CS 3214 implemented a wide variety of features into their web servers, as dis-

cussed in section 4.2.1. Each distinct server took different approaches to all features. Despite

these differences, Gurthang was capable of fuzzing every implementation.

98 CHAPTER 4. EVALUATION

Goal 3 - Discovering Bugs

As we discussed in Section 4.2.5, We fuzzed 55 distinct web servers and discovered 48 total

bugs of varying cause. During fuzzing, we enabled AFL++’s AFL_CUSTOM_MUTATOR_ONLY en-

vironment variable, which disables all AFL++-built-in fuzzing mutations and relies solely on

the mutations built into Gurthang’s [9]. This means AFL++ was not responsible for mutating

the comux files; Gurthang performed all mutations and thus created all test cases during our

fuzzing campaigns. These test cases eventually enabled AFL++ to discover crashes in the web

servers.

Goal 4 - Going Beyond Existing Tools

Our results from the CS 3214 research study show that the bugs we discovered evaded the

detection of the existing unit test suite. Our coverage measurements described in Section

4.2.4 show that the unit tests exercise a sufficient amount of each web server’s functionality.

Despite many servers passing these unit tests prior to fuzzing, Gurthang still discovered bugs

in them. With this, we can conclude that fuzzing was necessary for the discovery of these

bugs, and Gurthang enabled their discovery.

It is possible other state-of-the-art testing tools, such as Valgrind’s memcheck utility and

LLVM’s Undefined Behavior Sanitizer would have assisted the participants in uncovering

the root causes of these bugs prior to discovering them with the fuzzer [23, 34, 50]. When

analyzing the bugs discovered by Gurthang, we confirmed these tools do indeed detect them

once the web server has been fed the fuzzer’s input file. However, without the input file

crafted by the fuzzer, the web server likely would not have exhibited any faulty behavior

during normal testing. This further emphasizes our conclusion: the bug would not have

surfaced under normal testing, and thus fuzzing was needed to discover these bugs.

4.6. EVALUATION LIMITATIONS 99

4.6 Evaluation Limitations

We made certain choices during evaluation that introduced some limitations. This section

discusses those limitations.

A separate assignment within CS 3214 in the Fall 2021 semester required students to im-

plement MP4 video streaming onto their servers. At the time of the study, the unit tests

provided to students did not exercise the video streaming functionality. However, a few test

cases we seeded AFL++ with attempted to invoke this relatively untested functionality. Three

bugs discovered during the study exploited the video streaming functionality in some servers;

these bugs may have been fixed prior to fuzzing if appropriate unit tests existed. However,

the majority of bugs we discovered (the remaining 45) did not involve this shortcoming. (As

of April 2022, we have implemented unit tests to exercise this functionality.)

Additionally, at the time of the study, we had not yet implemented the CHUNK_DICT_SWAP

mutation in Gurthang’s mutator, and thus the use of HTTP dictionaries was not a part of

this portion of our evaluation. However, the web servers implemented in CS 3214 use a very

small subset of HTTP request methods and headers, meaning the use of HTTP dictionaries

may not have had much additional effect.

We fuzzed Apache and Nginx’s basic static file serving functionality. A small number of

additional modules were enabled in both servers during fuzzing, but we provided no specific

test cases to AFL++ that invoked them. In doing this we limited Gurthang to fuzzing a robust

and relatively simple portion of the two servers’ overall behavior. It is possible Gurthang

could have made more discoveries if we spent time fuzzing other parts of Apache and Nginx,

such as configuration files, authentication functionality, cache behavior, and other features

built into both servers.

We sought to address the challenge of fuzzing a web server’s ability to properly identify

100 CHAPTER 4. EVALUATION

message boundaries when reading a HTTP messages through a network socket, as described

in Section 1.1. All 55 web servers from the CS 3214 study were built atop the same set of

starter code that implemented this functionality without flaw. As such, our evaluations did

not thoroughly test a diverse set of message boundary functionality.

Finally, AFL++ has many configurable features that can assist with discovering bugs in certain

contexts [9]. One example is the integration of power schedules originating from AFLFast

that steer test case creation towards new execution behavior faster than the original AFL [4].

We largely left AFL++ with its default settings and did not take advantage of the full feature

set. By doing this, we may have limited Gurthang’s ability to discover bugs.

Chapter 5

Related Work

In this chapter we discuss previous research and Gurthang’s relationship to it.

5.1 Related Work in Fuzzing

Researchers have explored various aspects of fuzzing in order to better test certain target

programs. We discuss some of these pursuits in this section.

Grammar Fuzzing

Grammar-based fuzzers are designed to be fully aware of the target program’s input for-

mat [2, 46]. This enables them to generate diverse test cases that pass the target’s syntactic

and semantic checks to exercise deeper paths of execution. Grammar fuzzers typically use

Context-Free Grammar specifications and parse trees to perform grammar-friendly test case

mutation and generation. Two such grammar-based fuzzers, Nautilus and Gramatron, have

been successful at finding bugs deep within certain language interpreters [2, 46]. In com-

parison, Gurthang is not aware of the grammar of its target programs (HTTP, FTP, and

other networking protocols) and thus cannot reap the benefits of grammar fuzzing. However,

Gurthang is more general-purpose, allowing it to more easily test a diverse set of targets.

101

102 CHAPTER 5. RELATED WORK

Hybrid Fuzzing

Hybrid fuzzing utilizes both traditional fuzzing techniques and concolic execution (a

combination of symbolic execution and concrete testing) to combine their strengths

and mitigate their individual weaknesses. Two of these hybrid fuzzers are Driller [47]

and QSYM [56]. They use concolic execution to steer fuzzing into new compartments

of the target’s behavior guarded by specific conditions (such as an if-statement checking

for 0x00abcdef). Once new behavior is found through concolic execution, general-purpose

fuzzing takes over until the search space is relatively exhausted. This strategy yields a variety

of areas within the target program to explore, and it has been shown to discover previously-

unknown bugs in real-world programs [56]. Gurthang harnesses AFL++, which does not use

concolic execution in any way. However, improving Gurthang to use a hybrid fuzzer may be

beneficial as future work.

Binary-Only Fuzzing

Despite the heavy usage and high success rate of source-code-guided fuzzing, situations

still exist where source code is not available for a target program. Binary-only fuzzing

seeks to transform an executable to create a more effective feedback loop while maintaining

the performance of the original binary. ZAFL, one such binary-only fuzzer, re-writes the

target program’s binary to inject inlined instrumentation that achieves similar feedback and

performance to traditional compile-time instrumentation seen from grey-box fuzzers like AFL

and AFL++ [33]. Gurthang was implemented to harness AFL++, which requires open source

code. However, no part of Gurthang depends on this, meaning it could be modified to

harness a binary-only fuzzer to enable the fuzzing of closed-source web servers. We leave

this as future work.

5.1. RELATED WORK IN FUZZING 103

Fuzzing Harnesses

Fuzzing harnesses bridge the gap between a specific target program and a fuzzer. (Gurthang’s

LD_PRELOAD library is a fuzzing harness for web servers.) Harnesses strive for compatibility

to make more target programs available for fuzzing. For example: kAFL, an AFL-like fuzzer

designed to find bugs in kernel execution, implements a harness that wraps the target kernel

in a Virtual Machine and executes a user-space program that invokes the kernel with the

fuzzer’s test case [43].

Gurthang is predated by Preeny, an open-source project containing a variety of LD_PRELOAD

libraries to modify target program behavior [45]. One of Preeny’s libraries acts as a fuzzing

harness for network applications by “de-socketing” a web server (i.e. replacing the use

of socket file descriptors with standard file streams). Similar to Gurthang’s LD_PRELOAD li-

brary, Preeny’s “de-socketer” uses internal threads to intercept network programming system

calls. However, rather than establish local connections to the target server (like Gurthang),

Preeny instead mimics a subset of the socket programming API by interacting with stdin

and stdout. Preeny’s approach is functional, but it has some drawbacks we address with

Gurthang:

• Preeny’s “de-socketing” approach only works when the target program makes the

read() and write() system calls. Typically, web servers use the recv() and send()

calls to interact with socket file descriptors. Because of this, source code modification

may be necessary when fuzzing with Preeny.

• Preeny is not thread-safe, and thus can only safely fuzz single-threaded web servers.

• Preeny can only manage a single client connection when harnessing web servers.

After the conclusion of Gurthang’s development and at the time of writing of this thesis

104 CHAPTER 5. RELATED WORK

(the winter and spring of 2022), Libdesock, a new network application fuzzing harness, was

created [17]. Libdesock emulates the entire network stack of the Linux kernel entirely within

user-space, supports multi-threaded applications, and claims to have a 5x speedup when

compared to Preeny [8]. It has been tested against Nginx, Apache, OpenSSH, OpenVPN,

and a host of other networking applications.

In terms of efficiently fuzzing networking applications, Libdesock appears to re-define the

state-of-the-art. Gurthang does not emulate the entire networking stack and as such is still

subject to the same performance drawbacks as Preeny. However, Gurthang still introduces

novelty in its connection multiplexing design. Both Gurthang and Libdesock support multi-

threaded web servers, but Gurthang explicitly exercises multiple threads at once through

the comux file format and LD_PRELOAD library’s interaction with the server.

5.2 Network Application Fuzzers

A number of networking fuzzers exist. Each take different approaches to fuzzing network

applications. We discuss some of them in this section, and how our research relates.

AFLNet

AFLNet is a fork of the original AFL designed to fuzz applications that use well-known

networking protocols to communicate [39, 40]. It internally connects to the target web server

and sends test cases via a socket. AFLNet uses a state machine that parses protocol response

codes (such as HTTP response status codes as discussed in Section 2.2.2) to influence test

case decisions during a fuzzing campaign. While this state machine is novel, there are

drawbacks to AFLNet’s implementation:

5.2. NETWORK APPLICATION FUZZERS 105

• When compared to AFL++ (harnessed with Gurthang), AFLNet is much slower. Across

several 10-hour trial runs, we observed AFL++ to achieve an average of 379.5% more

executions in the same amount of time.

• AFLNet does not support multiple connections to the target web server [40]. Gurthang

does, through its LD_PRELOAD library and the comux file format.

While AFLNet contributes a functional and novel approach to fuzzing certain network ap-

plications, it was developed prior to AFL++’s creation (which exceeds it in speed and path

discovery) and has some design limitations that have caused it to fall behind the state-of-

the-art.

AFL++’s Network-Fuzzing Branch

The AFL++ GitHub repository contains a deprecated branch designed for fuzzing network

applications [9]. However, the developers have noted that the performance is not adequate

when compared to harnessing the standard AFL++ with Preeny’s “de-socketing” LD_PRELOAD

library.

Gurthang is comparable in performance to Preeny. Preeny itself has some drawbacks that

make it an imperfect solution for fuzzing network applications (as we discuss in Section

5.1). This, along with other advantages Gurthang introduces, makes the AFL++ networking

branch an undesirable choice. We chose to include it in this section to showcase the fuzzing

community’s awareness of the need for effective grey-box network fuzzing solutions.

106 CHAPTER 5. RELATED WORK

Boofuzz

Boofuzz is an extensive network fuzzer that accepts a user-written protocol format and

uses instrumentation similar to AFL’s to detect failures in the target web server [37, 38].

Users must create a small Python programs that makes calls to Boofuzz’s API to facilitate

fuzzing. Although initial setup is more involved when compared to AFL-like fuzzers, Boofuzz

can understand the grammar of networking protocols at a granularity chosen by the user,

making it a grey-box fuzzer and a grammar fuzzer, unlike Gurthang. It is also capable

of playing the role of a HTTP server to fuzz client networking applications. Boofuzz was

written in Python, and as such we suspect it may be less optimized than AFL++, which was

written in C. Unfortunately, due to time constraints, we did not evaluate Gurthang against

Boofuzz.

Wfuzz

Wfuzz is a black-box HTTP-specific fuzzer [30, 31]. Because of its focus on HTTP, it is

capable of parsing full HTTP messages and mutating specific fields within HTTP messages

to create diverse test cases. It also maintains knowledge of previously-requested server

URLs and previously-received response codes, which allows it to direct its efforts towards

new behavior. Wfuzz is proficient at understanding HTTP and targeting various aspects of

the protocol. However, it is designed to target a remote web server, and thus is a black-

box fuzzer. It relies solely on the remote server’s HTTP responses to form a feedback loop

and thus may be outpaced in many cases by grey-box fuzzers such as AFL++. Gurthang, in

comparison, has the advantage of using AFL++’s feedback loop and speed. Because of this,

we suspect Gurthang and AFL++ will achieve more discovery than Wfuzz. Again, due to time

constraints, we did not evaluate Gurthang against Wfuzz.

Chapter 6

Future Work

We designed Gurthang to easily fuzz web servers with state-of-the-art fuzzing tools and a

unique connection multiplexing protocol that exercises multiple connections to the server in

a single run of the server. While our evaluation shows it has met our goals, we outline many

ways it can be improved in this section.

6.1 Increased Performance

It is possible some related works in network application fuzzing achieve better perfor-

mance (such as more fuzzer executions per second) than Gurthang. Generally, we have

observed Gurthang to have acceptable performance, but optimizations could be made to the

LD_PRELOAD library’s threading model, the AFL++ mutator’s parsing of comux files, and other

internal procedures, to improve fuzzing throughput.

For example: Gurthang presently must pay the overhead of spawning one thread for each

chunk in a comux file. This overhead increases with the comux file’s chunk count. A possible

optimization would be to instead use fewer threads (perhaps a single thread, or one for each

connection) to manage these chunks.

107

108 CHAPTER 6. FUTURE WORK

6.2 Protocol Awareness

As we discussed in Chapter 5, a fuzzer that understands the grammar of the target program’s

inputs can be more capable of uncovering new behavior in the target program during fuzzing

by generating test cases that pass the target’s syntactic and semantic checks [2, 21, 46].

Gurthang’s AFL++ custom mutator module presently does not implement such syntax aware-

ness. In one sense, this is beneficial, as by not focusing on one particular networking protocol

(such as HTTP), we have created Gurthang as a fuzzing framework for any networking ap-

plication. In a different sense, though, we may have held Gurthang back by neglecting to

implement protocol awareness for HTTP. We leave the implementation of HTTP awareness

into Gurthang as future work, as it may lead to more execution path discovery (and by

extension, more bug discovery) during fuzzing. Of all future works to pursue, we believe this

one is the most advantageous.

6.3 True Parallel Communication

In Section 3.3.1 we describe the internal threading model of the Gurthang LD_PRELOAD

library. The controller thread oversees the spawning of secondary chunk threads for each

chunk present in the comux file it parsed from stdin. Before spawning the next chunk thread,

the controller thread waits for the previous to exit. Even though Gurthang enables the ability

to have multiple simultaneous connections open with the target web server, truly-parallel

communication is not achieved due to this threading model.

In one way, this is advantageous in terms of stability. AFL++’s code instrumentation is thread-

safe, but threads are scheduled by the Linux kernel based on many factors. These factors

change over time, meaning multiple threads will not be scheduled in the same order each

6.4. FURTHER TESTING OF REAL-WORLD WEB SERVERS 109

time a program is executed. The fact that Gurthang’s LD_PRELOAD library threads explicitly

wait for the previous threads to complete before spawning new ones imposes an ordering of

the threads, regardless of how they are scheduled. This means subsequent runs of the same

comux file under AFL++ will be relatively stable (i.e. the same exact execution paths will be

revealed in AFL++’s instrumentation most of the time). Some risk of instability still exists,

as we discuss in Section 3.5, but we haven’t observed these risks to impede fuzzing.

The downside to this approach is that Gurthang does not cause the target server to handle

two requests across two separate connections in true parallel. This means some bugs that

involve multi-threading race conditions (such as two threads racing to write to the same

unprotected global variable) may not be revealed by Gurthang.

6.4 Further Testing of Real-World Web Servers

As we discuss in Section 4.4, we evaluated Gurthang by fuzzing the basic static file serving

behavior of both Apache and Nginx. We did not spend time fuzzing other, more complex

modules within these servers. In addition, other well-known open-source web servers exist

that could be used to evaluate Gurthang’s capabilities, such as Hiawatha and OpenLite-

Speed [44, 54]. We leave this as future work.

Chapter 7

Conclusions

Many state-of-the-art fuzzers lack the ability to effectively perform fuzz-testing on network

applications due to the unique constraints they follow. Past research has attempted to

address this issue, but has certain drawbacks that make the fuzzing of network applications

difficult.

To address the issue and provide a more capable network fuzzing framework, we designed

and developed Gurthang, a fuzzing framework that enables the state-of-the-art fuzzer AFL++

to perform fuzz-testing on single-threaded and multi-threaded web servers across multiple

simultaneous socket connections, all without the need for any source code modification. We

implemented Gurthang with two shared libraries and a unique file format (the comux file

format). Our implementation allows for a web server to accept test cases from a fuzzer and

exercise multiple concurrent client connections through the information specified in each

comux file. Our mutator library mutates both the data within these comux files and the

instructions that dictate how and when this data will be sent to the target server. We

accomplish all of this without having to modify the source code of the target web server.

We evaluated Gurthang using 55 distinct web servers submitted through a study during the

Fall 2021 semester in Virginia Tech’s CS 3214: Computer Systems course, as well as on

two real-world web servers (Apache and Nginx). With Gurthang, we discovered 48 bugs of

varying origin on the 55 web servers throughout the duration of the Fall 2021 study. We

discovered no bugs in Apache and Nginx’s static file serving functionality. Every web server

110

111

we used to evaluate Gurthang was fuzzed easily and without any source code modification.

As we discuss in Section 1.3, this research makes multiple contributions. Gurthang provides

a simple approach to fuzzing network applications and introduces novelty in its ability to

establish multiple simultaneous connections with the target application in a single execution

of a fuzzing campaign. We open-sourced Gurthang to encourage its use and further eval-

uation on GitHub (https://github.com/cwshugg/gurthang). Lastly, we contribute our

evaluation of Gurthang that proves its ability to fuzz web servers and discover bugs.

https://github.com/cwshugg/gurthang

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-

ples, Techniques, &; Tools. Pearson Addison-Wesley, 2nd edition, 2007.

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-

Reza Sadeghi, and Daniel Teuchert. NAUTILUS: Fishing for deep bugs with grammars.

In Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA,

01 2019. doi: 10.14722/ndss.2019.23412.

[3] A. Barth. RFC 6265 - HTTP state management mechanism, April 2011. URL https:

//datatracker.ietf.org/doc/html/rfc6265.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox

fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, page 1032–1043. Association for

Computing Machinery, 2016. doi: 10.1145/2976749.2978428. URL https://doi.org/

10.1145/2976749.2978428.

[5] D. Clark. The design philosophy of the DARPA internet protocols. In Symposium

Proceedings on Communications Architectures and Protocols, SIGCOMM ’88, page 106–

114. Association for Computing Machinery, 1988. doi: 10.1145/52324.52336. URL

https://doi.org/10.1145/52324.52336.

[6] Ben Collins. Libjwt - github repository, May 2015. URL https://github.com/

benmcollins/libjwt. Accessed 2022-2-23.

112

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6265
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/52324.52336
https://github.com/benmcollins/libjwt
https://github.com/benmcollins/libjwt

BIBLIOGRAPHY 113

[7] MITRE Corporation. CWE - common weakness enumeration, Accessed 2022-3-8. URL

https://cwe.mitre.org/.

[8] Patrick Detering. lolcads tech blog - fuzzing network applications with AFL and libdes-

ock, February 2022. URL https://lolcads.github.io/posts/2022/02/libdesock/.

Accessed 2022-3-10.

[9] AFL++ Developers. Aflpluslpus - the AFL++ fuzzing framework, Accessed 2022-3-8.

URL https://aflplus.plus/.

[10] GDB Developers. GDB: The GNU Project Debugger - Documentation, Accessed 2022-

2-23. URL https://www.sourceware.org/gdb/.

[11] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++ : Com-

bining incremental steps of fuzzing research. In 14th USENIX Workshop on Of-

fensive Technologies (WOOT 20). USENIX Association, August 2020. URL https:

//www.usenix.org/conference/woot20/presentation/fioraldi.

[12] Andrea Fioraldi, Alessandro Mantovani, Dominik Maier, and Davide Balzarotti. Regis-

tered report: Dissecting american fuzzy lop - a fuzzbench evaluation. In FUZZING 2022,

1st International Fuzzing Workshop, 24 April 2022, San Diego, CA, USA / Co-located

with NDSS 2022, San Diego, 2022.

[13] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. AFL++ -

github repository, Accessed 2022-2-28. URL https://github.com/AFLplusplus/

AFLplusplus.

[14] The Apache Software Foundation. Apache HTTP server project, Accessed 2022-3-11.

URL https://httpd.apache.org/.

https://cwe.mitre.org/
https://lolcads.github.io/posts/2022/02/libdesock/
https://aflplus.plus/
https://www.sourceware.org/gdb/
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://httpd.apache.org/

114 BIBLIOGRAPHY

[15] The Open Web Application Security Project Foundation. The OWASP foundation,

Accessed 2022-3-8. URL https://owasp.org/.

[16] The Open Web Application Security Project Foundation. Vulnerabilities, Accessed

2022-5-17. URL https://owasp.org/www-community/vulnerabilities/.

[17] Information Processing Fraunhofer Institute for Communication and Ergonomics FKIE

Cyber Analysis & Defense Department. Libdesock - github repository, Accessed 2022-

3-10. URL https://github.com/fkie-cad/libdesock.

[18] Owen Garrett. Inside nginx: How we designed for perfor-

mance & scale, June 2015. URL https://www.nginx.com/blog/

inside-nginx-how-we-designed-for-performance-scale/. Accessed 2022-3-

11.

[19] Patrice Godefroid. Fuzzing: Hack, art, and science. Commun. ACM, 63(2):70–76,

jan 2020. ISSN 0001-0782. doi: 10.1145/3363824. URL https://doi.org/10.1145/

3363824.

[20] The Open Group. The open group base specification, 2018. URL https://pubs.

opengroup.org/onlinepubs/9699919799.2018edition/.

[21] Shengtuo Hu. AFL++ grammar mutator - github repository, Accessed 2022-2-23. URL

https://github.com/AFLplusplus/Grammar-Mutator.

[22] LAF-Intel. LAF-LLVM-Pass - gitlab repository, Accessed 2022-4-5. URL https://

gitlab.com/laf-intel/laf-llvm-pass.

[23] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proceedings of the 2004 International Symposium

on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

https://owasp.org/
https://owasp.org/www-community/vulnerabilities/
https://github.com/fkie-cad/libdesock
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale/
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://github.com/AFLplusplus/Grammar-Mutator
https://gitlab.com/laf-intel/laf-llvm-pass
https://gitlab.com/laf-intel/laf-llvm-pass

BIBLIOGRAPHY 115

[24] Petri Lehtinen. Jansson - github repository, Accessed 2022-2-23. URL https://github.

com/akheron/jansson.

[25] E. Blanton M. Allman, V. Paxson. RFC 5681 - tcp congestion control, September 2009.

URL https://datatracker.ietf.org/doc/html/rfc5681.

[26] Linux man-pages project. diff(1) - Linux Programmer’s Manual, Accessed 2022-2-24.

URL https://www.man7.org/linux/man-pages/man1/diff.1.html.

[27] Linux man-pages project. signal(7) - Linux Programmer’s Manual, Accessed 2022-3-8.

URL https://www.man7.org/linux/man-pages/man7/signal.7.html.

[28] Linux man-pages project. dlsym(3) - Linux Programmer’s Manual, Accessed 2022-3-9.

URL https://man7.org/linux/man-pages/man3/dlsym.3.html.

[29] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,

Edward J. Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing:

A survey. IEEE Transactions on Software Engineering, 47(11):2312–2331, 2021. doi:

10.1109/TSE.2019.2946563.

[30] Xavier Mendez. Wfuzz: The Web fuzzer, March 2017. URL https://wfuzz.

readthedocs.io/en/latest/. Accessed 2022-3-10.

[31] Xavier Mendez. Wfuzz - github repository, Accessed 2022-3-10. URL https://github.

com/xmendez/wfuzz.

[32] Barton Miller, David Koski, Cjin Lee, Vivekananda Maganty, Ravi Murthy, Ajitkumar

Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the reliability of unix

utilities and services. Technical report, University of Wisconsin - Computer Sciences

Department, 01 1998.

https://github.com/akheron/jansson
https://github.com/akheron/jansson
https://datatracker.ietf.org/doc/html/rfc5681
https://www.man7.org/linux/man-pages/man1/diff.1.html
https://www.man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man3/dlsym.3.html
https://wfuzz.readthedocs.io/en/latest/
https://wfuzz.readthedocs.io/en/latest/
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz

116 BIBLIOGRAPHY

[33] Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser, Jack W. Davidson, and Matthew

Hicks. Breaking through binaries: Compiler-quality instrumentation for better binary-

only fuzzing. In 30th USENIX Security Symposium (USENIX Security 21), pages

1683–1700. USENIX Association, August 2021. URL https://www.usenix.org/

conference/usenixsecurity21/presentation/nagy.

[34] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’07, page 89–100.

Association for Computing Machinery, 2007. doi: 10.1145/1250734.1250746. URL

https://doi.org/10.1145/1250734.1250746.

[35] Information Sciences Institute University of Southern California. RFC 793 - transmis-

sion control protocol, September 1981. URL https://datatracker.ietf.org/doc/

html/rfc793.

[36] The University of Wisconsin Madison. Fuzz testing of application reliability, Accessed

2022-3-8. URL https://pages.cs.wisc.edu/~bart/fuzz/.

[37] Joshua Pereyda. boofuzz: Network Protocol Fuzzing for Humans, October 2020. URL

https://boofuzz.readthedocs.io/. Accessed 2022-3-10.

[38] Joshua Pereyda. Boofuzz - github repository, Accessed 2022-3-10. URL https://

github.com/jtpereyda/boofuzz.

[39] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. AFLNET: A grey-

box fuzzer for network protocols. In 2020 IEEE 13th International Conference on

Software Testing, Validation and Verification (ICST), pages 460–465, 2020. doi:

10.1109/ICST46399.2020.00062.

https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://doi.org/10.1145/1250734.1250746
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://pages.cs.wisc.edu/~bart/fuzz/
https://boofuzz.readthedocs.io/
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz

BIBLIOGRAPHY 117

[40] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. AFLNet - github reposi-

tory, Accessed 2022-3-10. URL https://github.com/aflnet/aflnet.

[41] J. Reschke R. Fielding. RFC 7230 - hypertext transfer protocol, June 2014. URL

https://datatracker.ietf.org/doc/html/rfc7230.

[42] J. Reschke R. Fielding. RFC 7231 - hypertext transfer protocol - semantics and content,

June 2014. URL https://datatracker.ietf.org/doc/html/rfc7231.

[43] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and

Thorsten Holz. kAFL: Hardware-Assisted feedback fuzzing for OS kernels. In 26th

USENIX Security Symposium (USENIX Security 17), pages 167–182, Vancouver, BC,

August 2017. USENIX Association. URL https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/schumilo.

[44] Tim Schürmann. Hiawatha webserver, Accessed 2022-4-6. URL https://www.

hiawatha-webserver.org/.

[45] Yan Shoshitaishvili. Preeny - github repository, Accessed 2022-3-7. URL https://

github.com/zardus/preeny.

[46] Prashast Srivastava and Mathias Payer. Gramatron: Effective grammar-aware fuzzing.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis, ISSTA 2021, page 244–256. Association for Computing Machinery, 2021.

doi: 10.1145/3460319.3464814. URL https://doi.org/10.1145/3460319.3464814.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Ja-

copo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller:

Augmenting fuzzing through selective symbolic execution. In Network and Distributed

Systems Security (NDSS) Symposium, 01 2016. doi: 10.14722/ndss.2016.23368.

https://github.com/aflnet/aflnet
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.hiawatha-webserver.org/
https://www.hiawatha-webserver.org/
https://github.com/zardus/preeny
https://github.com/zardus/preeny
https://doi.org/10.1145/3460319.3464814

118 BIBLIOGRAPHY

[48] Igor Sysoev and Inc. Nginx. Nginx, Accessed 2022-3-11. URL https://nginx.org/en/.

[49] GCC Team. Using the GNU Compiler Collection (GCC) - Gcov - a Test Coverage Pro-

gram, Accessed 2022-2-23. URL https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#

Gcov.

[50] The Clang Team. Clang Compiler Users’s Manual - UndefinedBehav-

iorSanitizer, Accessed 2022-2-23. URL https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html.

[51] The Clang Team. Clang Compiler User’s Manual - AddressSanitizer, Accessed 2022-5-

19. URL https://clang.llvm.org/docs/AddressSanitizer.html.

[52] The Clang Team. Clang Compiler User’s Manual - SanitizerCoverage, Accessed 2022-

5-19. URL https://clang.llvm.org/docs/SanitizerCoverage.html.

[53] The Clang Team. Clang Compiler User’s Manual - ThreadSanitizer, Accessed 2022-5-19.

URL https://clang.llvm.org/docs/ThreadSanitizer.html.

[54] LiteSpeed Technologies. OpenLiteSpeed Website, Accessed 2022-4-6. URL https:

//openlitespeed.org/.

[55] L. Torvalds and Git Community. Git - version control system, Accessed 2022-4-4. URL

https://git-scm.com/.

[56] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM : A

practical concolic execution engine tailored for hybrid fuzzing. In 27th USENIX

Security Symposium (USENIX Security 18), pages 745–761, Baltimore, MD, Au-

gust 2018. USENIX Association. URL https://www.usenix.org/conference/

usenixsecurity18/presentation/yun.

https://nginx.org/en/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html#Gcov
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://openlitespeed.org/
https://openlitespeed.org/
https://git-scm.com/
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

BIBLIOGRAPHY 119

[57] Michał Zalewski. Technical “whitepaper” for afl-fuzz, Accessed 2022-3-8. URL https:

//lcamtuf.coredump.cx/afl/technical_details.txt.

[58] Google Project Zero. WinAFL - github repository, Accessed 2022-4-1. URL https:

//github.com/googleprojectzero/winafl.

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Challenges of Fuzzing Network Applications
	Proposed Solution
	Contributions Made
	Thesis Roadmap

	Background
	Fuzzing
	The Origins of Fuzzing
	Types of Fuzzers
	Basic Blocks
	LLVM
	AFL and AFL++
	Memory-Related Vulnerabilities

	Networking Fundamentals
	TCP - Transmission Control Protocol
	HTTP - Hypertext Transfer Protocol
	Web Server Concurrency Design

	Operating Systems Fundamentals
	Linux Standard File Streams
	Linux Networking Sockets
	Linux Shared Libraries & LD_PRELOAD Interposition
	Linux Process Signals

	Design and Implementation
	Design Overview
	Bridging the Input Gap
	The Comux File Format
	The Comux Mutator

	The Comux File Format
	File Layout
	The Comux Toolkit

	The Gurthang LD_PRELOAD Library
	Internal Threading
	Connection Table

	The Gurthang AFL++ Custom Mutator
	Comux Inspection
	Comux Mutation Strategies
	Test Case Trimming

	Design Limitations

	Evaluation
	Evaluation Goals
	Research Study
	HTTP Server Project
	Study Protocol
	Study Participation
	Unit Testing Prior to Participation
	Assessment of Gurthang's Use By Participants
	Examples of Bugs Discovered by Gurthang
	Participant Bug Fixes over Multiple Fuzzing Campaigns

	Survey Results
	Fuzzing Real-World Web Servers
	Fuzzing Apache
	Fuzzing Nginx

	Evaluation Results
	Evaluation Limitations

	Related Work
	Related Work in Fuzzing
	Network Application Fuzzers

	Future Work
	Increased Performance
	Protocol Awareness
	True Parallel Communication
	Further Testing of Real-World Web Servers

	Conclusions
	Bibliography

